Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Phycol ; 59(5): 963-979, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37464562

RESUMEN

Phaeocystis antarctica forms extensive spring blooms in the Southern Ocean that coincide with high concentrations of dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO), dimethylsulfide (DMS), and acrylate. We determined how concentrations of these compounds changed during the growth of axenic P. antarctica cultures exposed to light-limiting, sub-saturating, and saturating PAR irradiances. Cellular DMSP concentrations per liter cell volume (CV) ranged between 199 and 403 mmol · LCV -1 , with the highest concentrations observed under light-limiting PAR. Cellular acrylate concentrations did not change appreciably with a change in irradiance level or growth, ranging between 18 and 45 mmol · LCV -1 , constituting an estimated 0.2%-2.8% of cellular carbon. Both dissolved acrylate and DMSO increased substantially with irradiance during exponential growth on a per-cell basis, ranging from 0.91 to 3.15 and 0.24 to 1.39 fmol · cell-1 , respectively, indicating substantial export of these compounds into the dissolved phase. Average cellular DMSO:DMSP ratios increased 7.6-fold between exponential and stationary phases of batch growth, with a 3- to 13-fold increase in cellular DMSO likely formed from abiotic reactions of DMSP and DMS with reactive oxygen species (ROS). At mM levels, cellular DMSP and acrylate are proposed to serve as de facto antioxidants in P. antarctica not regulated by oxidative stress or changes in ROS. Instead, cellular DMSP concentrations are likely controlled by other physiological processes including an overflow mechanism to remove excess carbon via acrylate, DMS, and DMSO during times of unbalanced growth brought on by physical stress or nutrient limitation. Together, these compounds should aid P. antarctica in adapting to a range of PAR irradiances by maintaining cellular functions and reducing oxidative stress.


Asunto(s)
Haptophyta , Compuestos de Sulfonio , Dimetilsulfóxido , Especies Reactivas de Oxígeno , Acrilatos , Carbono
2.
Sci Adv ; 5(10): eaax6535, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31681848

RESUMEN

Breaking waves produce bubble plumes that burst at the sea surface, injecting primary marine aerosol (PMA) highly enriched with marine organic carbon (OC) into the atmosphere. It is widely assumed that this OC is modern, produced by present-day biological activity, even though nearly all marine OC is thousands of years old, produced by biological activity long ago. We used natural abundance radiocarbon (14C) measurements to show that 19 to 40% of the OC associated with freshly produced PMA was refractory dissolved OC (RDOC). Globally, this process removes 2 to 20 Tg of RDOC from the oceans annually, comparable to other RDOC losses. This process represents a major removal pathway for old OC from the sea, with important implications for oceanic and atmospheric biogeochemistry, the global carbon cycle, and climate.

3.
Environ Sci Technol ; 53(16): 9407-9417, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31329419

RESUMEN

Surfactants account for minor fractions of total organic carbon in the ocean but can significantly influence the production of primary marine aerosol particles (PMA) at the sea surface via modulation of bubble surface tension. During September and October 2016, model PMA (mPMA) were produced from seawater by bursting bubbles at two biologically productive and two oligotrophic stations in the western North Atlantic Ocean. Total concentrations of surfactants extracted from mPMA and seawater were quantified and characterized via measurements of surface tension isotherms and critical micelle concentrations (CMCs). Surfactant CMCs in biologically productive seawater were lower than those in the oligotrophic seawater suggesting that surfactant mixtures in the two regions were chemically distinct. mPMA surfactants were enriched in all regions relative to those in the associated seawater. Surface tension isotherms indicate that mPMA surfactants were weaker than corresponding seawater surfactants. mPMA from biologically productive seawater contained higher concentrations of surfactants than those produced from oligotrophic seawater, supporting the hypothesis that seawater surfactant properties modulate mPMA surfactant concentrations. Diel variability in concentrations of seawater and mPMA surfactants in some regions is consistent with biological and/or photochemical processing. This work demonstrates direct links between surfactants in mPMA and those in the associated seawater.


Asunto(s)
Agua de Mar , Tensoactivos , Aerosoles , Océano Atlántico , Tensión Superficial
4.
Environ Sci Technol ; 50(24): 13361-13370, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993080

RESUMEN

Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m3 (mol quanta)-1). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m3 (mol quanta)-1. The largest AQY(330), up to 34 m3 (mol quanta)-1), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d-1), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.


Asunto(s)
Fotoblanqueo , Fotólisis , Nitratos , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...