Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34849772

RESUMEN

Homeodomain-interacting protein kinases (HIPKs) are a family of four conserved proteins essential for vertebrate development, as demonstrated by defects in the eye, brain, and skeleton that culminate in embryonic lethality when multiple HIPKs are lost in mice. While HIPKs are essential for development, functional redundancy between the four vertebrate HIPK paralogues has made it difficult to compare their respective functions. Because understanding the unique and shared functions of these essential proteins could directly benefit the fields of biology and medicine, we addressed the gap in knowledge of the four vertebrate HIPK paralogues by studying them in the fruit fly Drosophila melanogaster, where reduced genetic redundancy simplifies our functional assessment. The single hipk present in the fly allowed us to perform rescue experiments with human HIPK genes that provide new insight into their individual functions not easily assessed in vertebrate models. Furthermore, the abundance of genetic tools and established methods for monitoring specific developmental pathways and gross morphological changes in the fly allowed for functional comparisons in endogenous contexts. We first performed rescue experiments to demonstrate the extent to which each of the human HIPKs can functionally replace Drosophila Hipk for survival and morphological development. We then showed the ability of each human HIPK to modulate Armadillo/ß-catenin levels, JAK/STAT activity, proliferation, growth, and death, each of which have previously been described for Hipks, but never all together in comparable tissue contexts. Finally, we characterized novel developmental phenotypes induced by human HIPKs to gain insight to their unique functions. Together, these experiments provide the first direct comparison of all four vertebrate HIPKs to determine their roles in a developmental context.


Asunto(s)
Drosophila melanogaster , Proteínas de Homeodominio , Proteínas Quinasas , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Fosforilación , Proteínas Quinasas/metabolismo
2.
PLoS One ; 15(3): e0221006, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32187190

RESUMEN

Homeodomain-interacting protein kinases (Hipks) have been previously associated with cell proliferation and cancer, however, their effects in the nervous system are less well understood. We have used Drosophila melanogaster to evaluate the effects of altered Hipk expression on the nervous system and muscle. Using genetic manipulation of Hipk expression we demonstrate that knockdown and over-expression of Hipk produces early adult lethality, possibly due to the effects on the nervous system and muscle involvement. We find that optimal levels of Hipk are critical for the function of dopaminergic neurons and glial cells in the nervous system, as well as muscle. Furthermore, manipulation of Hipk affects the structure of the larval neuromuscular junction (NMJ) by promoting its growth. Hipk regulates the phosphorylation of the synapse-associated cytoskeletal protein Hu-li tai shao (Hts; adducin in mammals) and modulates the expression of two important protein kinases, Calcium-calmodulin protein kinase II (CaMKII) and Partitioning-defective 1 (PAR-1), all of which may alter neuromuscular structure/function and influence lethality. Hipk also modifies the levels of an important nuclear protein, TBPH, the fly orthologue of TAR DNA-binding protein 43 (TDP-43), which may have relevance for understanding motor neuron diseases.


Asunto(s)
Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/enzimología , Drosophila melanogaster/fisiología , Músculos/anatomía & histología , Músculos/metabolismo , Sistema Nervioso/anatomía & histología , Sistema Nervioso/metabolismo , Proteínas Quinasas/aislamiento & purificación , Animales , Tipificación del Cuerpo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Ojo/embriología , Larva/metabolismo , Masculino , Músculos/citología , Sistema Nervioso/citología , Unión Neuromuscular/metabolismo , Tamaño de los Órganos , Fosforilación , Sinapsis/metabolismo
3.
Dis Model Mech ; 11(1)2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29208636

RESUMEN

Aberrations in signaling pathways that regulate tissue growth often lead to tumorigenesis. Homeodomain-interacting protein kinase (Hipk) family members are reported to have distinct and contradictory effects on cell proliferation and tissue growth. From these studies, it is clear that much remains to be learned about the roles of Hipk family protein kinases in proliferation and cell behavior. Previous work has shown that Drosophila Hipk is a potent growth regulator, thus we predicted that it could have a role in tumorigenesis. In our study of Hipk-induced phenotypes, we observed the formation of tumor-like structures in multiple cell types in larvae and adults. Furthermore, elevated Hipk in epithelial cells induces cell spreading, invasion and epithelial-to-mesenchymal transition (EMT) in the imaginal disc. Further evidence comes from cell culture studies, in which we expressed Drosophila Hipk in human breast cancer cells and showed that it enhances proliferation and migration. Past studies have shown that Hipk can promote the action of conserved pathways implicated in cancer and EMT, such as Wnt/Wingless, Hippo, Notch and JNK. We show that Hipk phenotypes are not likely to arise from activation of a single target, but rather through a cumulative effect on numerous target pathways. Most Drosophila tumor models involve mutations in multiple genes, such as the well-known RasV12 model, in which EMT and invasiveness occur after the additional loss of the tumor suppressor gene scribble. Our study reveals that elevated levels of Hipk on their own can promote both hyperproliferation and invasive cell behavior, suggesting that Hipk family members could be potent oncogenes and drivers of EMT.


Asunto(s)
Carcinogénesis/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas Quinasas/metabolismo , Animales , Membrana Basal/metabolismo , Membrana Basal/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Hemocitos/metabolismo , Hemocitos/patología , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Fenotipo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...