Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34940612

RESUMEN

Succinate is a metabolite in the tricarboxylic acid cycle (TCA) which plays a central role in mitochondrial activity. Excess succinate is known to be transported out of the cytosol, where it activates a succinate receptor (SUCNR1) to enhance inflammation through macrophages in various contexts. In addition, the intracellular role of succinate beyond an intermediate metabolite and prior to its extracellular release is also important to the polarization of macrophages. However, the role of succinate in microglial cells has not been characterized. Lipopolysaccharide (LPS) stimulates the elevation of intracellular succinate levels. To reveal the function of intracellular succinate associated with LPS-stimulated inflammatory response in microglial cells, we assessed the levels of ROS, cytokine production and mitochondrial fission in the primary microglia pretreated with cell-permeable diethyl succinate mimicking increased intracellular succinate. Our results suggest that elevated intracellular succinate exerts a protective role in the primary microglia by preventing their conversion into the pro-inflammatory M1 phenotype induced by LPS. This protective effect is SUCNR1-independent and mediated by reduced mitochondrial fission and cellular ROS production.

2.
Brain Behav ; 10(1): e01465, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769222

RESUMEN

BACKGROUND: Inflammation in the brain is mediated by the cyclooxygenase pathway, which leads to the production of prostaglandins. Prostaglandin (PG) D2, the most abundant PG in the brain, increases under pathological conditions and is spontaneously metabolized to PGJ2. PGJ2 is highly neurotoxic, with the potential to transition neuroinflammation into a chronic state and contribute to neurodegeneration as seen in many neurological diseases. Conversely, PACAP27 is a lipophilic peptide that raises intracellular cAMP and is an anti-inflammatory agent. The aim of our study was to investigate the therapeutic potential of PACAP27 to counter the behavioral and neurotoxic effects of PGJ2 observed in aged subjects. METHODS: PGJ2 was injected bilaterally into the hippocampal CA1 region of 53-week-old and 12-week-old C57BL/6N male mice, once per week over 3 weeks (three total infusions) and included co-infusions of PACAP27 within respective treatment groups. Our behavioral assessments looked at spatial learning and memory performance on the 8-arm radial maze, followed by histological analyses of fixed hippocampal tissue using Fluoro-Jade C and fluorescent immunohistochemistry focused on IBA-1 microglia. RESULTS: Aged mice treated with PGJ2 exhibited spatial learning and long-term memory deficits, as well as neurodegeneration in CA3 pyramidal neurons. Aged mice that received co-infusions of PACAP27 exhibited remediated learning and memory performance and decreased neurodegeneration in CA3 pyramidal neurons. Moreover, microglial activation in the CA3 region was also reduced in aged mice cotreated with PACAP27. CONCLUSIONS: Our data show that PGJ2 can produce a retrograde spread of damage not observed in PGJ2-treated young mice, leading to age-dependent neurodegeneration of hippocampal neurons producing learning and memory deficits. PACAP27 can remediate the behavioral and neurodegenerative effects that PGJ2 produces in aged subjects. Targeting specific neurotoxic prostaglandins, such as PGJ2, offers great promise as a new therapeutic strategy downstream of cyclooxygenases, to combat the neuronal deficits induced by chronic inflammation.


Asunto(s)
Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Prostaglandina D2/análogos & derivados , Aprendizaje Espacial/efectos de los fármacos , Animales , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1157-1170, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28372990

RESUMEN

In Alzheimer's disease proteasome activity is reportedly downregulated, thus increasing it could be therapeutically beneficial. The proteasome-associated deubiquitinase USP14 disassembles polyubiquitin-chains, potentially delaying proteasome-dependent protein degradation. We assessed the protective efficacy of inhibiting or downregulating USP14 in rat and mouse (Usp14axJ) neuronal cultures treated with prostaglandin J2 (PGJ2). IU1 concentrations (HIU1>25µM) reported by others to inhibit USP14 and be protective in non-neuronal cells, reduced PGJ2-induced Ub-protein accumulation in neurons. However, HIU1 alone or with PGJ2 is neurotoxic, induces calpain-dependent Tau cleavage, and decreases E1~Ub thioester levels and 26S proteasome assembly, which are energy-dependent processes. We attribute the two latter HIU1 effects to ATP-deficits and mitochondrial Complex I inhibition, as shown herein. These HIU1 effects mimic those of mitochondrial inhibitors in general, thus supporting that ATP-depletion is a major mediator of HIU1-actions. In contrast, low IU1 concentrations (LIU1≤25µM) or USP14 knockdown by siRNA in rat cortical cultures or loss of USP14 in cortical cultures from ataxia (Usp14axJ) mice, failed to prevent PGJ2-induced Ub-protein accumulation. PGJ2 alone induces Ub-protein accumulation and decreases E1~Ub thioester levels. This seemingly paradoxical result may be attributed to PGJ2 inhibiting some deubiquitinases (such as UCH-L1 but not USP14), thus triggering Ub-protein stabilization. Overall, IU1-concentrations that reduce PGJ2-induced accumulation of Ub-proteins are neurotoxic, trigger calpain-mediated Tau cleavage, lower ATP, E1~Ub thioester and E1 protein levels, and reduce proteasome activity. In conclusion, pharmacologically inhibiting (with low or high IU1 concentrations) or genetically down-regulating USP14 fail to enhance proteasomal degradation of Ub-proteins or Tau in neurons.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Pirroles/farmacología , Pirrolidinas/farmacología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitinación/efectos de los fármacos , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Corteza Cerebral/patología , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/patología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/patología , Ratas , Ratas Sprague-Dawley , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteínas tau/genética
4.
J Nat Prod ; 67(7): 1141-6, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15270568

RESUMEN

A literature survey and theoretical calculations have been applied to explore bilateral symmetry in natural product systems. Molecular bilateral symmetry is defined to include C(2) (sigma plane or axis), C(s)(), and C(2)(v)() point groups in molecules. Natural products that possess chirality in the form of C(2)-axes or sigma planes of symmetry are present in higher proportions (69%) compared to molecules bearing achiral C(s)() or C(2)(v)() point groups (14% and 16%, respectively). Density functional theoretical and semiempirical calculations indicate that the dimers 3,3'-dibromo-5,5'-[N-(2-(3-bromo-4-hydroxyphenyl)ethyl)-2-hydroxyiminoacetamide]biphenyl-2,2'-diol (1), (S,S)-1,2-bis(2-amino-3H-imidazol-4-yl)-(R,R)-3,4-bis(1H-pyrrole-2-amido)cyclobutane (2), 2-oxo-dimethyl-1,3-bis(3,4-dibromobenzene-1,2-diol) (11), 1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione (12), and bis(5-isopropyl-8-methylazulene)methane (13) evolve more energy per connecting bond than the corresponding trimers or tetramers would. This we propose is a guiding parameter that may adjust molecule growth. The corresponding trimers, tetramers, or higher oligomers of 1, 2, and 11-13 appear to represent "missing" compounds in nature. Natural products 1, 2, and 11-13, having 3-fold and higher levels of symmetry, would founder on the lack of a facile method of synthesis and on the prohibitively high-energy costs caused by steric crowding at their core.


Asunto(s)
Productos Biológicos/química , Modelos Moleculares , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...