Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(9): 1303-1318, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563253

RESUMEN

Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.


Asunto(s)
Acetil-CoA Carboxilasa , Malonil Coenzima A , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Malonil Coenzima A/metabolismo , Serina-Treonina Quinasas TOR/genética , Ácidos Grasos/metabolismo , Mamíferos/metabolismo , Adenosina Trifosfato
2.
Nat Commun ; 4: 1769, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23612310

RESUMEN

Brown adipocytes are a primary site of energy expenditure and reside not only in classical brown adipose tissue but can also be found in white adipose tissue. Here we show that microRNA 155 is enriched in brown adipose tissue and is highly expressed in proliferating brown preadipocytes but declines after induction of differentiation. Interestingly, microRNA 155 and its target, the adipogenic transcription factor CCAAT/enhancer-binding protein ß, form a bistable feedback loop integrating hormonal signals that regulate proliferation or differentiation. Inhibition of microRNA 155 enhances brown adipocyte differentiation and induces a brown adipocyte-like phenotype ('browning') in white adipocytes. Consequently, microRNA 155-deficient mice exhibit increased brown adipose tissue function and 'browning' of white fat tissue. In contrast, transgenic overexpression of microRNA 155 in mice causes a reduction of brown adipose tissue mass and impairment of brown adipose tissue function. These data demonstrate that the bistable loop involving microRNA 155 and CCAAT/enhancer-binding protein ß regulates brown lineage commitment, thereby, controlling the development of brown and beige fat cells.


Asunto(s)
Adipocitos Marrones/citología , Adipocitos Blancos/citología , Diferenciación Celular/genética , Retroalimentación Fisiológica , MicroARNs/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Adipogénesis/genética , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Modelos Biológicos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/metabolismo
3.
Sci Signal ; 5(239): ra62, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22932701

RESUMEN

The ubiquitous second messenger cyclic guanosine monophosphate (cGMP) plays an important role in metabolism and promotes brown adipocyte differentiation. We showed that ablation of the gene encoding vasodilator-stimulated phosphoprotein (VASP), a major downstream component of the cGMP signaling cascade, increased cellular cGMP content in brown and white adipocytes and mouse embryonic fibroblasts. VASP-deficient cells showed increased activation of Rac1, which in turn increased the abundance of the cGMP-producing enzyme soluble guanylyl cyclase (sGC), the main receptor for nitric oxide. Consequently, loss of VASP caused increased cGMP concentrations and enhanced brown adipocyte differentiation. Consistent with the in vitro data, we found increased energy expenditure in VASP-deficient mice and exposure to cold triggered enhanced lipolysis and cellular respiration in VASP-deficient brown fat cells. In addition, VASP-deficient mice exhibited increased development of brown-like adipocytes in white fat. Our data revealed that a VASP to Rac to sGC negative feedback loop limited cGMP production, thereby regulating adipogenesis and energy homeostasis.


Asunto(s)
Adipocitos Marrones/metabolismo , Moléculas de Adhesión Celular/metabolismo , GMP Cíclico/biosíntesis , Guanilato Ciclasa/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/metabolismo , Aclimatación/fisiología , Adipocitos Marrones/fisiología , Adipogénesis/fisiología , Análisis de Varianza , Animales , Compuestos Azo , Western Blotting , Calorimetría Indirecta , Moléculas de Adhesión Celular/genética , Diferenciación Celular/fisiología , Respiración de la Célula/fisiología , Frío , Metabolismo Energético/fisiología , Lipólisis/fisiología , Luciferasas , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Fosfoproteínas/genética , Guanilil Ciclasa Soluble , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA