Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucl Med Biol ; 132-133: 108908, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38599145

RESUMEN

INTRODUCTION: Site-specific immunomodulators (SSIs) are a novel class of therapeutics made from inactivated bacterial species designed to regulate the innate immune system in targeted organs. QBECO is a gut-targeted SSI that is being advanced clinically to treat and/or prevent inflammatory bowel disease, cancer, and serious infections of the gastrointestinal (GI) tract and proximal organs, and QBKPN is a lung-targeted SSI that is in clinical development for the treatment and/or prevention of chronic inflammatory lung disease, lung cancers and respiratory tract infections. While these SSIs have demonstrated both safety and proof-of-concept in preclinical and clinical studies, detailed understanding of their trafficking and biodistribution is yet to be fully characterized. METHODS: QBECO and QBKPN were radiolabeled with [89Zr] and injected subcutaneously into healthy mice. The mice underwent Positron Emission Tomography (PET) imaging every day for eight days to track biodistribution of the SSIs. Tissue from the site of injection was collected and immunohistologically probed for immune cell infiltration. RESULTS: Differential biodistribution of the two SSIs was seen, adhering to their site-specific targeting. QBKPN appeared to migrate from the site of injection (abdomen) to the cervical lymph nodes which are nearer to the respiratory tract and lungs. QBECO remained in the abdominal region, with lymphatic trafficking to the inguinal lymph nodes, which are nearer to GI-proximal tissues/organs. Immune infiltration at the site of injection comprised of neutrophils for both SSIs, and macrophages for only QBKPN. CONCLUSION: Radiolabeling of SSIs allows for longitudinal in vivo imaging of biodistribution and trafficking. PET imaging revealed differential biodistribution of the SSIs based on the organotropism of the bacteria from which the SSI is derived. Trafficking from the site of injection to the targeted site is in part mediated via the lymphatics and involves macrophages and neutrophils.

2.
J Nucl Med ; 65(3): 475-480, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272705

RESUMEN

Fructose metabolism has been implicated in various diseases, including metabolic disorders, neurodegenerative disorders, cardiac disorders, and cancer. However, the limited availability of a quantitative imaging radiotracer has hindered its exploration in pathology and diagnostic imaging. Methods: We adopted a molecular design strategy based on the catalytic mechanism of aldolase, a key enzyme in fructolysis. We successfully synthesized a radiodeoxyfluorinated fructose analog, [18F]4-fluoro-4-deoxyfructose ([18F]4-FDF), in high molar activity. Results: Through heavy isotope tracing by mass spectrometry, we demonstrated that C4-deoxyfluorination of fructose led to effective trapping as fluorodeoxysorbitol and fluorodeoxyfructose-1-phosphate in vitro, unlike C1- and C6-fluorinated analogs that resulted in fluorolactate accumulation. This observation was consistent in vivo, where [18F]6-fluoro-6-deoxyfructose displayed substantial bone uptake due to metabolic processing whereas [18F]4-FDF did not. Importantly, [18F]4-FDF exhibited low uptake in healthy brain and heart tissues, known for their high glycolytic activity and background levels of [18F]FDG uptake. [18F]4-FDF PET/CT allowed for sensitive mapping of neuro- and cardioinflammatory responses to systemic lipopolysaccharide administration. Conclusion: Our study highlights the significance of aldolase-guided C4 radiodeoxyfluorination of fructose in enabling effective radiotracer trapping, overcoming limitations of C1 and C6 radioanalogs toward a clinically viable tool for imaging fructolysis in highly glycolytic tissues.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Tomografía Computarizada por Tomografía de Emisión de Positrones , Aldehído-Liasas , Glucólisis , Fructosa
3.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628729

RESUMEN

Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an Nε(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme. The pleiotropic nature of TG2 and multi-faceted activities have resulted in TG2 being implicated in numerous disease pathologies including celiac disease, fibrosis, and cancer. Targeted TG2 therapies have not been selective for subcellular localization, such that currently no tools exist to selectively target extracellular over intracellular TG2. Herein, we have designed novel TG2-selective inhibitors that are not only highly potent and irreversible, but also cell impermeable, targeting only extracellular TG2. We have also further derivatized the scaffold to develop probes that are intrinsically fluorescent or bear an alkyne handle, which target both intra- and extracellular TG2, in order to facilitate cellular labelling and pull-down assays. The fluorescent probes were internalized and imaged in cellulo, and provide the first implicit experimental evidence that by comparison with their cell-impermeable analogues, it is specifically intracellular TG2, and presumably its G-protein activity, that contributes to transglutaminase-associated cancer progression.


Asunto(s)
Neoplasias , Proteína Glutamina Gamma Glutamiltransferasa 2 , Humanos , Transglutaminasas , Colorantes Fluorescentes , Fenotipo
4.
Nat Commun ; 14(1): 3965, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407664

RESUMEN

Chronic kidney disease (CKD) and acute kidney injury (AKI) are ongoing global health burdens. Glomerular filtration rate (GFR) is the gold standard measure of kidney function, with clinical estimates providing a global assessment of kidney health without spatial information of kidney- or region-specific dysfunction. The addition of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) to the anatomical imaging already performed would yield a 'one-stop-shop' for renal assessment in cases of suspected AKI and CKD. Towards urography by DCE-MRI, we evaluated a class of nitrogen-centered organic radicals known as verdazyls, which are extremely stable even in highly reducing environments. A glucose-modified verdazyl, glucoverdazyl, provided contrast limited to kidney and bladder, affording functional kidney evaluation in mouse models of unilateral ureteral obstruction (UUO) and folic acid-induced nephropathy (FAN). Imaging outcomes correlated with histology and hematology assessing kidney dysfunction, and glucoverdazyl clearance rates were found to be a reliable surrogate measure of GFR.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Ratones , Animales , Medios de Contraste , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico por imagen , Insuficiencia Renal Crónica/diagnóstico por imagen , Urografía
5.
Cell Rep ; 42(5): 112485, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37149866

RESUMEN

Neurovascular abnormalities in mouse models of 16p11.2 deletion autism syndrome are reminiscent of alterations reported in murine models of glucose transporter deficiency, including reduced brain angiogenesis and behavioral alterations. Yet, whether cerebrovascular alterations in 16p11.2df/+ mice affect brain metabolism is unknown. Here, we report that anesthetized 16p11.2df/+ mice display elevated brain glucose uptake, a phenomenon recapitulated in mice with endothelial-specific 16p11.2 haplodeficiency. Awake 16p11.2df/+ mice display attenuated relative fluctuations of extracellular brain glucose following systemic glucose administration. Targeted metabolomics on cerebral cortex extracts reveals enhanced metabolic responses to systemic glucose in 16p11.2df/+ mice that also display reduced mitochondria number in brain endothelial cells. This is not associated with changes in mitochondria fusion or fission proteins, but 16p11.2df/+ brain endothelial cells lack the splice variant NT-PGC-1α, suggesting defective mitochondrial biogenesis. We propose that altered brain metabolism in 16p11.2df/+ mice is compensatory to endothelial dysfunction, shedding light on previously unknown adaptative responses.


Asunto(s)
Células Endoteliales , Haploinsuficiencia , Ratones , Animales , Células Endoteliales/metabolismo , Biogénesis de Organelos , Deleción Cromosómica , Encéfalo
6.
Gen Comp Endocrinol ; 339: 114294, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37120097

RESUMEN

Hypoxemia from exposure to intermittent and/or acute environmental hypoxia (lower oxygen concentration) is a severe stressor for many animal species. The response to hypoxia of the hypothalamic-pituitary-adrenal axis (HPA-axis), which culminates in the release of glucocorticoids, has been well-studied in hypoxia-intolerant surface-dwelling mammals. Several group-living (social) subterranean species, including most African mole-rats, are hypoxia-tolerant, likely due to regular exposure to intermittent hypoxia in their underground burrows. Conversely, solitary mole-rat species, lack many adaptive mechanisms, making them less hypoxia-tolerant than the social genera. To date, the release of glucocorticoids in response to hypoxia has not been measured in hypoxia-tolerant mammalian species. Consequently, this study exposed three social African mole-rat species and two solitary mole-rat species to normoxia, or acute hypoxia and then measured their respective plasma glucocorticoid (cortisol) concentrations. Social mole-rats had lower plasma cortisol concentrations under normoxia than the solitary genera. Furthermore, individuals of all three of the social mole-rat species exhibited significantly increased plasma cortisol concentrations after hypoxia, similar to those of hypoxia-intolerant surface-dwelling species. By contrast, individuals of the two solitary species had a reduced plasma cortisol response to acute hypoxia, possibly due to increased plasma cortisol under normoxia. If placed in perspective with other closely related surface-dwelling species, the regular exposure of the social African mole-rats to hypoxia may have reduced the basal levels of the components for the adaptive mechanisms associated with hypoxia exposure, including circulating cortisol levels. Similarly, the influence of body mass on plasma cortisol levels cannot be ignored. This study demonstrates that both hypoxia-tolerant rodents and hypoxia-intolerant terrestrial laboratory-bred rodents may possess similar HPA-axis responses from exposure to hypoxia. Further research is required to confirm the results from this pilot study and to further confirm how the cortisol concentrations may influence responses to hypoxia in African mole-rats.


Asunto(s)
Hidrocortisona , Sistema Hipotálamo-Hipofisario , Animales , Proyectos Piloto , Sistema Hipófiso-Suprarrenal , Hipoxia , Ratas Topo/fisiología , Glucocorticoides
7.
Nat Commun ; 12(1): 6801, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815412

RESUMEN

Naked mole-rats are among the most hypoxia-tolerant mammals. During hypoxia, their body temperature (Tb) decreases via unknown mechanisms to conserve energy. In small mammals, non-shivering thermogenesis in brown adipose tissue (BAT) is critical to Tb regulation; therefore, we hypothesize that hypoxia decreases naked mole-rat BAT thermogenesis. To test this, we measure changes in Tb during normoxia and hypoxia (7% O2; 1-3 h). We report that interscapular thermogenesis is high in normoxia but ceases during hypoxia, and Tb decreases. Furthermore, in BAT from animals treated in hypoxia, UCP1 and mitochondrial complexes I-V protein expression rapidly decrease, while mitochondria undergo fission, and apoptosis and mitophagy are inhibited. Finally, UCP1 expression decreases in hypoxia in three other social African mole-rat species, but not a solitary species. These findings suggest that the ability to rapidly down-regulate thermogenesis to conserve oxygen in hypoxia may have evolved preferentially in social species.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Hipoxia/metabolismo , Ratas Topo/fisiología , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo , Animales , Femenino , Masculino
8.
Chem Commun (Camb) ; 57(83): 10867-10870, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34665184

RESUMEN

A new CEST-MRI contrast agent, 2-HYNIC, capable of sensing aromatic aldehydes is reported. Pyridoxal 5'-phosphate, a key Vitamin B6 metabolite necessary for >140 biotransformations was mapped by CEST-MRI in vitro and in vivo in lung cancer. 2-HYNIC provided access to this key biomarker associated with a variety of human diseases.


Asunto(s)
Medios de Contraste/química , Hidrazinas/química , Niacina/análogos & derivados , Vitamina B 6/metabolismo , Línea Celular Tumoral , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Vitamina B 6/química
9.
Acta Physiol (Oxf) ; 228(4): e13436, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31885213

RESUMEN

AIMS: Burrowing mammals tend to be more hypoxia tolerant than non-burrowing mammals and rely less on increases in ventilation and more on decreases in metabolic rate to tolerate hypoxia. Naked mole-rats (Heterocephalus glaber, NMRs), eusocial mammals that live in large colonies, are among the most hypoxia-tolerant mammals, and rely almost solely on decreases in metabolism with little change in ventilation during hypoxia. We hypothesized that the remarkable hypoxia tolerance of NMRs is an evolutionarily conserved trait derived from repeated exposure to severe hypoxia owing to their burrow environment and eusocial colony organization. METHODS: We used whole-body plethysmography and indirect calorimetry to measure the hypoxic ventilatory and metabolic responses of eight mole-rat species closely related to the NMR. RESULTS: We found that all eight species examined had a strong tolerance to hypoxia, with most species tolerating 3 kPa O2 , Heliophobius emini tolerating 2 kPa O2 and Bathyergus suillus tolerating 5 kPa O2 . All species examined employed a combination of increases in ventilation and decreases in metabolism in hypoxia, a response midway between that of the NMR and that of other fossorial species (larger ventilatory responses, lesser reductions in metabolism). We found that eusociality is not fundamental to the physiological response to hypoxia of NMRs as Fukomys damarensis, another eusocial species, was among this group. CONCLUSIONS: Our data suggest that, while the NMR is unique in the pattern of their physiological response to hypoxia, eight closely related mole-rat species share the ability to tolerate hypoxia like the current "hypoxia-tolerant champion," the NMR.


Asunto(s)
Hipoxia/metabolismo , Ratas Topo/fisiología , Respiración , Animales , Regulación de la Temperatura Corporal/fisiología , Calorimetría Indirecta/métodos , Pulmón/fisiología , Oxígeno/metabolismo , Pletismografía Total/métodos
10.
J Therm Biol ; 84: 228-235, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31466758

RESUMEN

Naked mole-rats are among the most hypoxia-tolerant mammals but have a poor thermoregulatory capacity due to their lack of insulating fur and fat, and small body size. In acute hypoxia, naked mole-rat body temperature (Tb) decreases to ambient temperature (Ta) but the mechanisms that underlie this thermoregulatory response are unknown. We hypothesized 1) that naked mole-rat blood vessels vasodilate during hypoxia to shunt heat toward the body surface and/or 2) that they augment heat loss through evaporative cooling. Using open-flow respirometry (indirect calorimetry) we explored metabolic and thermoregulatory strategies of naked mole-rats exposed to hypoxia (7% O2 for 1 h) at two relative humidities (RH; 50 or 100% water saturation), and in two Ta's (25 and 30 °C), alone, and following treatment with the vasoconstrictor angiotensin II (ANGII). We found that Tb and metabolic rate decreased in hypoxia across all treatment groups but that neither RH nor ANGII effected either variable in hypoxia. Conversely, both Tb and metabolic rate were reduced in 100% RH or by ANGII treatment in normoxia at 25 °C, and therefore the absolute change in both variables with the onset of hypoxia was reduced when vasodilation or evaporative cooling were prevented. We conclude that naked mole-rats employ evaporative cooling and vasodilation to thermoregulate in normoxia and in 25 °C but that neither mechanism is involved in thermoregulatory changes during acute hypoxia. These findings suggest that NMRs may employ passive strategies such as reducing thermogenesis to reduce Tb in hypoxia, which would support metabolic rate suppression.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Hipoxia/fisiopatología , Ratas Topo/fisiología , Vasodilatación/fisiología , Animales , Metabolismo Basal , Femenino , Masculino
11.
Chem Commun (Camb) ; 55(37): 5371-5374, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30994648

RESUMEN

A new radiotracer, [18F]NA3BF3, capable of rapid, stable, and catalyst-free complexation of aldehydes in vivo is reported. [18F]NA3BF3 was shown to bind aldehydes in live subjects using locally administered aldehyde-presenting microparticles, and was then applied to mapping aldehydic load in a mouse model of sepsis. [18F]NA3BF3 may enable the direct investigation of the chemical biology of aldehydes in living subjects, and may open avenues for the adoption of endogenous aldehydic load as an imaging biomarker of inflammatory pathology.


Asunto(s)
Aldehídos/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Animales , Boranos/química , Radioisótopos de Flúor/química , Riñón/diagnóstico por imagen , Lipopolisacáridos/toxicidad , Hígado/diagnóstico por imagen , Ratones , Ratones Endogámicos BALB C , Radiofármacos/síntesis química , Sepsis/diagnóstico , Sepsis/diagnóstico por imagen , ortoaminobenzoatos/química
12.
Org Biomol Chem ; 17(7): 1843-1853, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30450500

RESUMEN

Methyl 5-MeO-N-aminoanthranilate, a fluorogenic probe comprising a single substituted benzene ring has been applied towards the fluorescence detection of endogenous carbonyls through rapid, catalyst-free complexation of these bio-derived markers of cell stress under physiological conditions. The products formed during the reaction between the probe and aldehydic products of lipid peroxidation, including malondialdehyde and long-chain aliphatic aldehydes relevant to the oxidative decomposition of cell membranes, have been evaluated. Live cell imaging of diethyl maleate-induced oxidative stress with or without pretreatment with α-tocopherol was carried out, with the result suggesting that the presented molecule might serve as a minimalist molecular probe capable of cellular "Aldehydic Load" detection by fluorescence microscopy. This work also outlines functional constraints of the fluorogenic probe (i.e. intramolecular cyclization), providing a realistic evaluation of methyl 5-MeO-N-aminoanthranilate for fluorescence-based aldehyde detection.

13.
Artículo en Inglés | MEDLINE | ID: mdl-29355712

RESUMEN

Most small rodents reduce energy demand in hypoxia via behavioural strategies. For example, animals may reduce their activity, and/or move to colder environments or alter huddling strategies to take advantage of anapyretical energy savings. Naked mole rats (NMRs) are among the most hypoxia tolerant mammals and are highly social; social interactions also have a significant impact on behaviour. Therefore, this species offers a fascinating model in which to study trade-offs between social interactions and energy conservation in hypoxia. We hypothesized that the need to conserve energy in hypoxia supersedes the impetus of sociality in this species and predicted that, in hypoxia, behaviour would not differ between individuals or groups of NMRs. To test this hypothesis, we placed awake, freely behaving NMRs, alone or in groups of 2 or 4, into a temperature-controlled apparatus and measured behavioural activity during 1 h each of normoxia (21% O2), acute hypoxia (7% O2), and normoxic recovery. We found that in normoxia, groups of 4 NMRs were significantly more active in all temperatures than were groups of 1-2 NMRs. When exposed to hypoxia, individual NMRs were ~50% less active and their speed was reduced relative to normoxic levels. Conversely, groups of 2 or 4 NMRs exhibited minor or insignificant decreases in time spent active and speed in hypoxia and huddling behaviour was not altered. Our findings suggest that social interactions influence behavioural strategies employed by NMRs in hypoxia.


Asunto(s)
Conducta Animal , Hipoxia , Oxígeno/metabolismo , Enfermedad Aguda , Animales , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ratas Topo
14.
Biol Lett ; 13(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29263131

RESUMEN

Naked mole rats (NMRs) are among the most hypoxia-tolerant mammals. Other species respond to hypoxia by either escaping the hypoxic environment or drastically decreasing behavioural activity and body temperature (Tb) to conserve energy. However, NMRs rarely leave their underground burrows, which are putatively hypoxic and thermally stable near the NMRs' preferred Tb Therefore, we asked whether NMRs are able to employ behavioural and thermoregulatory strategies in response to hypoxia despite their need to remain active and the minimal thermal scope in their burrows. We exposed NMRs to progressively deeper levels of hypoxia (from 21 to 0% O2) while measuring their behaviour and Tb Behavioural activity decreased 40-60% in hypoxia and Tb decreased slightly in moderate hypoxia (5-9%) and then further with deeper hypoxia (3% O2). However, even at 3% O2 NMRs remained somewhat active and warm, and continued to explore their environment. Remarkably, NMRs were active for greater than 90 s in acute anoxia and Tb and metabolic rate decreased rapidly. We conclude that NMRs are adapted to remain awake and functional even at the extremes of their hypoxia-tolerance. This adaptation likely reflects variable and challenging levels of environmental hypoxia in the natural habitat of this species.


Asunto(s)
Conducta Animal/fisiología , Hipoxia/metabolismo , Ratas Topo/psicología , Adaptación Fisiológica , Animales , Metabolismo Basal , Regulación de la Temperatura Corporal/fisiología , Ratas Topo/fisiología , Movimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...