Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Stem Cell Res Ther ; 15(1): 186, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926849

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) and their differentiated cell types have a great potential for tissue repair and regeneration. While the primary focus of using hiPSCs has historically been to regenerate damaged tissue, emerging studies have shown a more potent effect of hiPSC-derived paracrine factors on tissue regeneration. However, the precise contents of the transplanted hiPSC-derived cell secretome are ambiguous. This is mainly due to the lack of tools to distinguish cell-specific secretome from host-derived proteins in a complex tissue microenvironment in vivo. METHODS: In this study, we present the generation and characterization of a novel hiPSC line, L274G-hiPSC, expressing the murine mutant methionyl-tRNA synthetase, L274GMmMetRS, which can be used for tracking the cell specific proteome via biorthogonal non-canonical amino acid tagging (BONCAT). We assessed the trilineage differentiation potential of the L274G-hiPSCs in vitro and in vivo. Furthermore, we assessed the cell-specific proteome labelling in the L274G-hiPSC derived cardiomyocytes (L274G-hiPSC-CMs) in vitro following co-culture with wild type human umbilical vein derived endothelial cells and in vivo post transplantation in murine hearts. RESULTS: We demonstrated that the L274G-hiPSCs exhibit typical hiPSC characteristics and that we can efficiently track the cell-specific proteome in their differentiated progenies belonging to the three germ lineages, including L274G-hiPSC-CMs. Finally, we demonstrated cell-specific BONCAT in transplanted L274G-hiPSC-CMs. CONCLUSION: The novel L274G-hiPSC line can be used to study the cell-specific proteome of hiPSCs in vitro and in vivo, to delineate mechanisms underlying hiPSC-based cell therapies for a variety of regenerative medicine applications.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Proteoma , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Proteoma/metabolismo , Animales , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Aminoácidos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Metionina-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/genética
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631901

RESUMEN

The vasculature is a key component of adult brain neural stem cell (NSC) niches. In the adult mammalian hippocampus, NSCs reside in close contact with a dense capillary network. How this niche is maintained is unclear. We recently found that adult hippocampal NSCs express VEGF, a soluble factor with chemoattractive properties for vascular endothelia. Here, we show that global and NSC-specific VEGF loss led to dissociation of NSCs and their intermediate progenitor daughter cells from local vasculature. Surprisingly, though, we found no changes in local vascular density. Instead, we found that NSC-derived VEGF supports maintenance of gene expression programs in NSCs and their progeny related to cell migration and adhesion. In vitro assays revealed that blockade of VEGF receptor 2 impaired NSC motility and adhesion. Our findings suggest that NSCs maintain their own proximity to vasculature via self-stimulated VEGF signaling that supports their motility towards and/or adhesion to local blood vessels.


Asunto(s)
Células-Madre Neurales , Factor A de Crecimiento Endotelial Vascular , Animales , Hipocampo/irrigación sanguínea , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
iScience ; 26(7): 107068, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534178

RESUMEN

Within the adult mammalian dentate gyrus (DG) of the hippocampus, glutamate stimulates neural stem cell (NSC) self-renewing proliferation, providing a link between adult neurogenesis and local circuit activity. Here, we show that glutamate-induced self-renewal of adult DG NSCs requires glutamate transport via excitatory amino acid transporter 1 (EAAT1) to stimulate lipogenesis. Loss of EAAT1 prevented glutamate-induced self-renewing proliferation of NSCs in vitro and in vivo, with little role evident for canonical glutamate receptors. Transcriptomics and further pathway manipulation revealed that glutamate simulation of NSCs relied on EAAT1 transport-stimulated lipogenesis. Our findings demonstrate a critical, direct role for EAAT1 in stimulating NSCs to support neurogenesis in adulthood, thereby providing insights into a non-canonical mechanism by which NSCs sense and respond to their niche.

4.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37163097

RESUMEN

Adult neural stem and progenitor cells (NSPCs) reside in the dentate gyrus (DG) of the hippocampus throughout the lifespan of most mammalian species. In addition to generating new neurons, NSPCs may alter their niche via secretion of growth factors and cytokines. We recently showed that adult DG NSPCs secrete vascular endothelial growth factor (VEGF), which is critical for maintaining adult neurogenesis. Here, we asked whether NSPC-derived VEGF alters hippocampal function independent of adult neurogenesis. We found that loss of NSPC-derived VEGF acutely impaired hippocampal memory, caused neuronal hyperexcitability and exacerbated excitotoxic injury. We also found that NSPCs generate substantial proportions of total DG VEGF and VEGF disperses broadly throughout the DG, both of which help explain how this anatomically-restricted cell population could modulate function broadly. These findings suggest that NSPCs actively support and protect DG function via secreted VEGF, thereby providing a non-neurogenic functional dimension to endogenous NSPCs.

6.
Exp Neurol ; 355: 114142, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709983

RESUMEN

Neural stem cell (NSC) based therapies are at the forefront of regenerative medicine strategies to combat illness and injury of the central nervous system (CNS). In addition to their ability to produce new cells, NSCs secrete a variety of products, known collectively as the NSC secretome, that have been shown to ameliorate CNS disease pathology and promote recovery. As pre-clinical and clinical research to harness the NSC secretome for therapeutic purposes advances, a more thorough understanding of the endogenous NSC secretome can provide useful insight into the functional capabilities of NSCs. In this review, we focus on research investigating the autocrine and paracrine functions of the endogenous NSC secretome across life. Throughout development and adulthood, we find evidence that the NSC secretome is a critical component of how endogenous NSCs regulate themselves and their niche. We also find gaps in current literature, most notably in the clinically-relevant domain of endogenous NSC paracrine function in the injured CNS. Future investigations to further define the endogenous NSC secretome and its role in CNS tissue regulation are necessary to bolster our understanding of NSC-niche interactions and to aid in the generation of safe and effective NSC-based therapies.


Asunto(s)
Células-Madre Neurales , Secretoma , Sistema Nervioso Central/patología , Nicho de Células Madre
7.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387845

RESUMEN

Inducible Cre recombinase facilitates temporal control of genetic recombination in numerous transgenic model systems, a feature which has made it a popular tool for adult neurogenesis studies. One of the most common forms of inducible Cre, CreERT2, requires activation by the selective estrogen receptor modulator tamoxifen (TAM) to initiate recombination of LoxP-flanked sequences. To date, most studies deliver TAM via intraperitoneal injection. But the introduction of TAM-infused commercial chows has recently expanded the possible modes of TAM delivery. Despite the widespread use of TAM-inducible genetic models in adult neurogenesis research, the comparative efficiency and off-target effects of TAM administration protocols is surprisingly infrequently studied. Here, we compare a standard, 5 d TAM injection regimen with voluntary consumption of TAM-infused chow. First, we used adult NestinCreERT2;Rosa-LoxP-STOP-LoxP-EYFP reporter mice to show that two weeks of TAM chow and 5 d of injections led to LoxP recombination in a similar phenotypic population of neural stem and progenitor cells (NSPCs) in the adult dentate gyrus. However, TAM chow resulted in substantially less overall recombination than injections. TAM administration also altered adult neurogenesis, but in different ways depending on administration route: TAM injection disrupted neural progenitor cell proliferation three weeks after TAM, whereas TAM chow increased neuronal differentiation of cells generated during the diet period. These findings provide guidance for selection of TAM administration route and appropriate controls in adult neurogenesis studies using TAM-inducible Cre mice. They also highlight the need for better understanding of off-target effects of TAM in other neurologic processes and organ systems.


Asunto(s)
Células-Madre Neurales , Tamoxifeno , Animales , Femenino , Hipocampo , Masculino , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Tamoxifeno/farmacología
8.
Front Mol Neurosci ; 15: 810722, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173579

RESUMEN

Multipotent neural stem cells (NSCs) are found in several isolated niches of the adult mammalian brain where they have unique potential to assist in tissue repair. Modern transcriptomics offer high-throughput methods for identifying disease or injury associated gene expression signatures in endogenous adult NSCs, but they require adaptation to accommodate the rarity of NSCs. Bulk RNA sequencing (RNAseq) of NSCs requires pooling several mice, which impedes application to labor-intensive injury models. Alternatively, single cell RNAseq can profile hundreds to thousands of cells from a single mouse and is increasingly used to study NSCs. The consequences of the low RNA input from a single NSC on downstream identification of differentially expressed genes (DEGs) remains insufficiently explored. Here, to clarify the role that low RNA input plays in NSC DEG identification, we directly compared DEGs in an oxidative stress model of cultured NSCs by bulk and single cell sequencing. While both methods yielded DEGs that were replicable, single cell sequencing using the 10X Chromium platform yielded DEGs derived from genes with higher relative transcript counts compared to non-DEGs and exhibited smaller fold changes than DEGs identified by bulk RNAseq. The loss of high fold-change DEGs in the single cell platform presents an important limitation for identifying disease-relevant genes. To facilitate identification of such genes, we determined an RNA-input threshold that enables transcriptional profiling of NSCs comparable to standard bulk sequencing and used it to establish a workflow for in vivo profiling of endogenous NSCs. We then applied this workflow to identify DEGs after lateral fluid percussion injury, a labor-intensive animal model of traumatic brain injury. Our work joins an emerging body of evidence suggesting that single cell RNA sequencing may underestimate the diversity of pathologic DEGs. However, our data also suggest that population level transcriptomic analysis can be adapted to capture more of these DEGs with similar efficacy and diversity as standard bulk sequencing. Together, our data and workflow will be useful for investigators interested in understanding and manipulating adult hippocampal NSC responses to various stimuli.

9.
Neural Regen Res ; 17(6): 1286-1292, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34782573

RESUMEN

The dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis. Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circuit function are framed by robust estimations of adult-born versus pre/perinatally-born neuron number. In contrast, the non-neurogenic functions of adult neural stem cells and their immediate progeny, such as secretion of bioactive growth factors and expression of extracellular matrix-modifying proteins, lack similar framing due to few estimates of their number versus other prominent secretory cells. Here, we apply immunohistochemical methods to estimate cell density of neural stem/progenitor cells versus other major classes of glial and endothelial cell types that are potentially secretory in the dentate gyrus of adult mice. Of the cell types quantified, we found that GFAP+SOX2+ stellate astrocytes were the most numerous, followed by CD31+ endothelia, GFAP-SOX2+ intermediate progenitors, Olig2+ oligodendrocytes, Iba1+ microglia, and GFAP+SOX2+ radial glia-like neural stem cells. We did not observe any significant sex differences in density of any cell population. Notably, neural stem/progenitor cells were present at a similar density as several cell types known to have potent functional roles via their secretome. These findings may be useful for refining hypotheses regarding the contributions of these cell types to regulating hippocampal function and their potential therapeutic uses. All experimental protocols were approved by the Ohio State University Institutional Animal Care and Use Committee (protocol# 2016A00000068) on July 14, 2016.

10.
Brain Res ; 1742: 146899, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442415

RESUMEN

Stem cells have the potential to advance therapy for many neurological diseases that are currently refractive to treatment. They are also key cellular players in homeostasis within several adult brain regions that host endogenous populations of neural stem cells. Investigations of the functions of stem cells in the adult CNS have historically approached these cells as sources of differentiated progeny, whether it be new neurons or new glial cells. Yet, as both basic research and pre-clinical efforts centered on stem cells in the brain push forward, it has become evident that this initial framework is incomplete. Emerging evidence indicates that stem and progenitor cells from a variety of tissues can regulate their microenvironment through production of secreted factors. This special issue highlights work investigating the role of the neural and non-neural stem cell secretome in regulating CNS function. These studies represent efforts both to more fully delineate the suite of factors secreted by stem cells and to evaluate its impact on CNS health and disease. Together, they demonstrate a broad potential for stem cell function through secreted proteins that urges continued basic and translational research in the years to come.


Asunto(s)
Microambiente Celular/fisiología , Exocitosis/fisiología , Células Madre/metabolismo , Diferenciación Celular , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo
11.
Brain Res ; 1735: 146717, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32035887

RESUMEN

Adult hippocampal neural stem and progenitor cells (NSPCs) secrete a variety of proteins that affect tissue function. Though several individual NSPC-derived proteins have been shown to impact key cellular processes, a broad characterization is lacking. Secretome profiling of low abundance stem cell populations is typically achieved via proteomic characterization of in vitro, isolated cells. Here, we identified hundreds of secreted proteins in conditioned media from in vitro adult mouse hippocampal NSPCs using an antibody array and mass spectrometry. Comparison of protein abundance between antibody array and mass spectrometry plus quantification of several key secreted proteins by ELISA revealed notable disconnect between methods in what proteins were identified as being high versus low abundance, suggesting that data from antibody arrays in particular should be approached with caution. We next assessed the NSPC secretome on a transcriptional level with single cell and bulk RNA sequencing (RNAseq) of cultured NSPCs. Comparison of RNAseq transcript levels of highly secreted proteins revealed that quantification of gene expression did not necessarily predict relative protein abundance. Interestingly, comparing our in vitro NSPC gene expression data with similar data from freshly isolated, in vivo hippocampal NSPCs revealed strong correlations in global gene expression between in vitro and in vivo NSPCs. Understanding the components and functions of the NSPC secretome is essential to understanding how these cells may modulate the hippocampal neurogenic niche. Cumulatively, our data emphasize the importance of using proteomics in conjunction with transcriptomics and highlights the need for better methods of unbiased secretome profiling.


Asunto(s)
Células-Madre Neurales/metabolismo , Transcriptoma/genética , Células Madre Adultas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Diferenciación Celular/genética , Células Cultivadas , Biología Computacional/métodos , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/metabolismo , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Neuronas/metabolismo , Proteómica/métodos
12.
J Transl Med ; 18(1): 63, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039730

RESUMEN

BACKGROUND: Direct cDNA preamplification protocols developed for single-cell RNA-seq have enabled transcriptome profiling of precious clinical samples and rare cell populations without the need for sample pooling or RNA extraction. We term the use of single-cell chemistries for sequencing low numbers of cells limiting-cell RNA-seq (lcRNA-seq). Currently, there is no customized algorithm to select robust/low-noise transcripts from lcRNA-seq data for between-group comparisons. METHODS: Herein, we present CLEAR, a workflow that identifies reliably quantifiable transcripts in lcRNA-seq data for differentially expressed genes (DEG) analysis. Total RNA obtained from primary chronic lymphocytic leukemia (CLL) CD5+ and CD5- cells were used to develop the CLEAR algorithm. Once established, the performance of CLEAR was evaluated with FACS-sorted cells enriched from mouse Dentate Gyrus (DG). RESULTS: When using CLEAR transcripts vs. using all transcripts in CLL samples, downstream analyses revealed a higher proportion of shared transcripts across three input amounts and improved principal component analysis (PCA) separation of the two cell types. In mouse DG samples, CLEAR identifies noisy transcripts and their removal improves PCA separation of the anticipated cell populations. In addition, CLEAR was applied to two publicly-available datasets to demonstrate its utility in lcRNA-seq data from other institutions. If imputation is applied to limit the effect of missing data points, CLEAR can also be used in large clinical trials and in single cell studies. CONCLUSIONS: lcRNA-seq coupled with CLEAR is widely used in our institution for profiling immune cells (circulating or tissue-infiltrating) for its transcript preservation characteristics. CLEAR fills an important niche in pre-processing lcRNA-seq data to facilitate transcriptome profiling and DEG analysis. We demonstrate the utility of CLEAR in analyzing rare cell populations in clinical samples and in murine neural DG region without sample pooling.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , RNA-Seq , Análisis de Secuencia de ARN , Transcriptoma/genética , Secuenciación del Exoma
13.
Neural Regen Res ; 14(1): 39-42, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30531067

RESUMEN

Cognitive impairment is a consequence of the normal aging process that effects many species, including humans and rodent models. Decline in hippocampal memory function is especially prominent with age and often reduces quality of life. As the aging population expands, the need for interventional strategies to prevent cognitive decline has become more pressing. Fortunately, several major lifestyle factors have proven effective at combating hippocampal aging, the most well-known of which are environmental enrichment and exercise. While the evidence supporting the beneficial nature of these factors is substantial, a less well-understood factor may also contribute to healthy cognitive aging: social engagement. We review the evidence supporting the role of social engagement in preserving hippocampal function in old age. In elderly humans, high levels of social engagement correlate with better hippocampal function, yet there is a dearth of work to indicate a causative role. Existing rodent literature is also limited but has begun to provide causative evidence and establish candidate mechanisms. Summed together, while many unanswered questions remain, it is clear that social engagement is a viable lifestyle factor for preserving cognitive function in old age. Social integration across the lifespan warrants more investigation and more appreciation when designing living circumstances for the elderly.

14.
J Vis Exp ; (141)2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30531711

RESUMEN

Ethologically relevant behavioral testing is a critical component of any study that uses mouse models to study the cognitive effects of various physiological or pathological changes. The object location task (OLT) and the novel object recognition task (NORT) are two effective behavioral tasks commonly used to reveal the function and relative health of specific brain regions involved in memory. While both of these tests exploit the inherent preference of mice for the novelty to reveal memory for previously encountered objects, the OLT primarily evaluates spatial learning, which relies heavily on hippocampal activity. The NORT, in contrast, evaluates non-spatial learning of object identity, which relies on multiple brain regions. Both tasks require an open-field-testing arena, objects with equivalent intrinsic value to mice, appropriate environmental cues, and video recording equipment and the software. Commercially available systems, while convenient, can be costly. This manuscript details a simple, cost-effective method for building the arenas and setting up the equipment necessary to perform the OLT and NORT. Furthermore, the manuscript describes an efficient testing protocol that incorporates both OLT and NORT and provides typical methods for data acquisition and analysis, as well as representative results. Successful completion of these tests can provide valuable insight into the memory function of various mouse model systems and appraise the underlying neural regions that support these functions.


Asunto(s)
Planificación Ambiental , Memoria/fisiología , Reconocimiento en Psicología/fisiología , Aprendizaje Espacial/fisiología , Grabación en Video/métodos , Animales , Hipocampo/fisiología , Masculino , Ratones , Percepción Visual/fisiología
15.
Front Aging Neurosci ; 10: 142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29904345

RESUMEN

The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.

17.
Mol Neurodegener ; 11: 31, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27112350

RESUMEN

BACKGROUND: Biological pathways that significantly contribute to sporadic Alzheimer's disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes. RESULTS: To access this information we probed relative levels of close to 600 secreted signaling proteins from patients' blood samples using antibody microarrays and mapped disease-specific molecular networks. Using these networks as seeds we then employed independent genome and transcriptome data sets to corroborate potential pathogenic pathways. CONCLUSIONS: We identified Growth-Differentiation Factor (GDF) signaling as a novel Alzheimer's disease-relevant pathway supported by in vivo and in vitro follow-up experiments, demonstrating the existence of a highly informative link between cellular pathology and changes in circulatory signaling proteins.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Red Nerviosa/metabolismo , Proteómica , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Transducción de Señal/fisiología
18.
Neuropsychopharmacology ; 41(8): 2160-70, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26830961

RESUMEN

In times of stress, social support can serve as a potent buffering mechanism that enhances resilience. In humans, stress can promote protective affiliative interactions and prosocial behavior. Yet, stress also precipitates psychopathologies characterized by social withdrawal such as post-traumatic stress disorder (PTSD) and depression. The factors that drive adaptive vs maladaptive social responses to stress are not yet clear. Rodent studies have focused on pair-bonded, opposite-sex mates and suggest that a variety of stressors can induce social support-like behaviors. However, between same-sex conspecifics-particularly males-stress effects on social bonding are less understood and often associated with aggression and social unrest. We thus sought to investigate if a moderate stressor-3 h of acute immobilization-impacts social-support behaviors differently when experienced in a neutral vs more innately threatening context (ie, paired with predator odor). We found that moderate stress increased social support-seeking behavior in rat cagemates and facilitated long-term sharing of a limited water resource, decreased aggression, and strongly defined dominance ranks (an indicator of home cage stability). In contrast, experiencing the same stressor in the presence of predator odor eliminated the positive behavioral effects of moderate stress. Importantly, hypothalamic oxytocin (OT) signaling increased coincident with stress in a neutral-but not a predator odor-context. Our results define a novel rodent model of divergent stress effects on social affiliation and OT signaling dependent on odor context with particularly strong relevance to stress-related disorders such as PTSD, which are characterized by a disrupted ability to seek and maintain social bonds.


Asunto(s)
Apego a Objetos , Oxitocina/fisiología , Conducta Social , Estrés Psicológico , Agresión , Animales , Conducta Animal , Hipotálamo/metabolismo , Masculino , Odorantes , Oxitocina/metabolismo , Ratas Sprague-Dawley , Restricción Física , Predominio Social
19.
Artículo en Inglés | MEDLINE | ID: mdl-26627453

RESUMEN

Aging is strongly correlated with decreases in neurogenesis, the process by which neural stem and progenitor cells proliferate and differentiate into new neurons. In addition to stem-cell-intrinsic factors that change within the aging stem-cell pool, recent evidence emphasizes new roles for systemic and microenvironmental factors in modulating the neurogenic niche. This article focuses on new insights gained through the use of heterochronic parabiosis models, in which an old mouse and a young circulatory system are joined. By studying the brains of both young and old mice, researchers are beginning to uncover circulating proneurogenic "youthful" factors and "aging" factors that decrease stem-cell activity and neurogenesis. Ultimately, the identification of factors that influence stem-cell aging may lead to strategies that slow or even reverse age-related decreases in neural-stem-cell (NSC) function and neurogenesis.


Asunto(s)
Envejecimiento/fisiología , Proliferación Celular/fisiología , Células-Madre Neurales/fisiología , Nicho de Células Madre/fisiología , Animales , Encéfalo/fisiología , Humanos , Ratones , Neurogénesis , Neuronas/fisiología , Parabiosis
20.
JAMA Neurol ; 72(10): 1191-4, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26237737

RESUMEN

In the modern medical era, more diverse and effective treatment options have translated to increased life expectancy. With this increased life span comes increased age-associated disease and the dire need to understand underlying causes so that therapies can be designed to mitigate the burden to health and the economy. Aging exacts a seemingly inevitable multisystem deterioration of function that acts as a risk factor for a variety of age-related disorders, including those that devastate organs of limited regenerative potential, such as the brain. Rather than studying the brain and mechanisms that govern its aging in isolation from other organ systems, an emerging approach is to understand the relatively unappreciated communication that exists between the brain and systemic environment. Revisiting classical methods of experimental physiology in animal models has uncovered surprising regenerative activity in young blood with translational implications for the aging liver, muscle, brain, and other organs. Soluble factors present in young or aged blood are sufficient to improve or impair cognitive function, respectively, suggesting an aging continuum of brain-relevant systemic factors. The age-associated plasma chemokine CCL11 has been shown to impair young brain function while GDF11 has been reported to increase the generation of neurons in aged mice. However, the identities of specific factors mediating memory-enhancing effects of young blood and their mechanisms of action are enigmatic. Here we review brain rejuvenation studies in the broader context of systemic rejuvenation research. We discuss putative mechanisms for blood-borne brain rejuvenation and suggest promising avenues for future research and development of therapies.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/metabolismo , Cognición/fisiología , Memoria/fisiología , Rejuvenecimiento/fisiología , Animales , Humanos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...