Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442273

RESUMEN

Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine structures of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. One structure shows an unexpected nsp8 stoichiometry despite remaining bound to RNA. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha- and betacoronaviruses. Our work demonstrates the importance of studying diverse coronaviruses in revealing aspects of coronavirus replication and identifying areas of conservation to be targeted by antiviral drugs.

2.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993498

RESUMEN

Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from the betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine the structure of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. Our structure shows an unexpected nsp8 stoichiometry in comparison to other published coronavirus polymerase structures. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha and betacoronaviruses as previously hypothesized. Our work shows the importance of studying diverse coronaviruses to reveal aspects of coronavirus replication while also identifying areas of conservation to be targeted by antiviral drugs.

3.
Nature ; 615(7950): 143-150, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36630998

RESUMEN

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Factores de Virulencia , Virulencia , Animales , Ratones , Línea Celular , Evasión Inmune , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Humanos , Vacunas contra la COVID-19/inmunología , Pulmón/citología , Pulmón/virología , Replicación Viral , Mutación
4.
Nucleic Acids Res ; 51(1): 315-336, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546762

RESUMEN

Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Ribonucleótidos , Humanos , Antivirales/farmacología , Exorribonucleasas/metabolismo , Ribonucleótidos/química , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , Diseño de Fármacos
5.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36263066

RESUMEN

The recently identified, globally predominant SARS-CoV-2 Omicron variant (BA.1) is highly transmissible, even in fully vaccinated individuals, and causes attenuated disease compared with other major viral variants recognized to date. The Omicron spike (S) protein, with an unusually large number of mutations, is considered the major driver of these phenotypes. We generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron in the backbone of an ancestral SARS-CoV-2 isolate and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escapes vaccine-induced humoral immunity, mainly due to mutations in the receptor binding motif (RBM), yet unlike naturally occurring Omicron, efficiently replicates in cell lines and primary-like distal lung cells. In K18-hACE2 mice, while Omicron causes mild, non-fatal infection, the Omicron S-carrying virus inflicts severe disease with a mortality rate of 80%. This indicates that while the vaccine escape of Omicron is defined by mutations in S, major determinants of viral pathogenicity reside outside of S.

6.
Sci Adv ; 8(3): eabk2039, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35044813

RESUMEN

One of the rate-limiting steps in analyzing immune responses to vaccines or infections is the isolation and characterization of monoclonal antibodies. Here, we present a hybrid structural and bioinformatic approach to directly assign the heavy and light chains, identify complementarity-determining regions, and discover sequences from cryoEM density maps of serum-derived polyclonal antibodies bound to an antigen. When combined with next-generation sequencing of immune repertoires, we were able to specifically identify clonal family members, synthesize the monoclonal antibodies, and confirm that they interact with the antigen in a manner equivalent to the corresponding polyclonal antibodies. This structure-based approach for identification of monoclonal antibodies from polyclonal sera opens new avenues for analysis of immune responses and iterative vaccine design.

7.
Elife ; 102021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34617885

RESUMEN

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Nucleótidos/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Línea Celular , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Modelos Teóricos , Nucleótidos/metabolismo , ARN Viral , SARS-CoV-2/enzimología , Procesos Estocásticos , Replicación Viral/efectos de los fármacos
8.
Cell Rep ; 36(9): 109650, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34433083

RESUMEN

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide evidence that the RNA-dependent RNA polymerase (RdRp) uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enable the direct observation of coronavirus polymerase deep and long-lived backtracking that is strongly stimulated by secondary structures in the template. The framework we present here elucidates one of the most important structure-dynamics-function relationships in human health today and will form the grounds for understanding the regulation of this complex.


Asunto(s)
COVID-19/virología , ARN Polimerasa Dependiente de ARN de Coronavirus/fisiología , Nucleótidos/metabolismo , ARN Viral/biosíntesis , SARS-CoV-2/fisiología , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Conformación Molecular , Nucleótidos/química , ARN Viral/química , Imagen Individual de Molécula , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología
9.
Commun Chem ; 42021.
Artículo en Inglés | MEDLINE | ID: mdl-34189273

RESUMEN

Coronaviruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a nucleotidyl transferase in the N-terminal (NiRAN) domain of the nonstructural protein (nsp) 12 protein within the RNA dependent RNA polymerase. Here we show the detection of guanosine monophosphate (GMP) and uridine monophosphate-modified amino acids in nidovirus proteins using heavy isotope-assisted mass spectrometry (MS) and MS/MS peptide sequencing. We identified lysine-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of in vitro GMP attachment via a phosphoramide bond. In SARS-CoV-2 replicase proteins, we demonstrate nsp12-mediated nucleotidylation of nsp7 lysine-2. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients.

10.
bioRxiv ; 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33851161

RESUMEN

The nucleotide analog Remdesivir (RDV) is the only FDA-approved antiviral therapy to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The physical basis for efficient utilization of RDV by SARS-CoV-2 polymerase is unknown. Here, we characterize the impact of RDV and other nucleotide analogs on RNA synthesis by the polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. The location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We reveal that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into deep backtrack, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this nucleotide analog well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases. TEASER: We revise Remdesivir's mechanism of action and reveal SARS-CoV-2 ability to evade interferon-induced antiviral ddhCTP.

11.
bioRxiv ; 2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33791706

RESUMEN

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We have used a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide the first evidence that an RdRp uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enables the direct observation of coronavirus polymerase deep and long-lived backtrack that are strongly stimulated by secondary structure in the template. The framework presented here elucidates one of the most important structure-dynamics-function relationships in human health today, and will form the grounds for understanding the regulation of this complex.

12.
Commun Chem ; 4(1): 41, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36697572

RESUMEN

Coronaviruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a nucleotidyl transferase in the N-terminal (NiRAN) domain of the nonstructural protein (nsp) 12 protein within the RNA dependent RNA polymerase. Here we show the detection of guanosine monophosphate (GMP) and uridine monophosphate-modified amino acids in nidovirus proteins using heavy isotope-assisted mass spectrometry (MS) and MS/MS peptide sequencing. We identified lysine-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of in vitro GMP attachment via a phosphoramide bond. In SARS-CoV-2 replicase proteins, we demonstrate nsp12-mediated nucleotidylation of nsp7 lysine-2. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients.

13.
Structure ; 29(4): 385-392.e5, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378641

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus responsible for significant morbidity and mortality in pigs. A key determinant of viral tropism and entry, the PEDV spike protein is a key target for the host antibody response and a good candidate for a protein-based vaccine immunogen. We used electron microscopy to evaluate the PEDV spike structure, as well as pig polyclonal antibody responses to viral infection. The structure of the PEDV spike reveals a configuration similar to that of HuCoV-NL63. Several PEDV protein-protein interfaces are mediated by non-protein components, including a glycan at Asn264 and two bound palmitoleic acid molecules. The polyclonal antibody response to PEDV infection shows a dominance of epitopes in the S1 region. This structural and immune characterization provides insights into coronavirus spike stability determinants and explores the immune landscape of viral spike proteins.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Infecciones por Coronavirus/inmunología , Epítopos/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Animales , Línea Celular , Microscopía por Crioelectrón , Ácidos Grasos Monoinsaturados/química , Modelos Moleculares , Conformación Molecular , Polisacáridos/química , Virus de la Diarrea Epidémica Porcina/química , Virus de la Diarrea Epidémica Porcina/metabolismo , Unión Proteica , Células Sf9 , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos
14.
Pharmacol Res Perspect ; 8(6): e00674, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124786

RESUMEN

SARS-CoV-2, a member of the coronavirus family, has caused a global public health emergency. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously reasoned that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) should inhibit coronaviruses, including SARS-CoV-2. Here, using model polymerase extension experiments, we demonstrate that the active triphosphate form of Sofosbuvir is incorporated by low-fidelity polymerases and SARS-CoV RNA-dependent RNA polymerase (RdRp), and blocks further incorporation by these polymerases; the active triphosphate form of Sofosbuvir is not incorporated by a host-like high-fidelity DNA polymerase. Using the same molecular insight, we selected 3'-fluoro-3'-deoxythymidine triphosphate and 3'-azido-3'-deoxythymidine triphosphate, which are the active forms of two other anti-viral agents, Alovudine and AZT (an FDA-approved HIV/AIDS drug) for evaluation as inhibitors of SARS-CoV RdRp. We demonstrate the ability of two of these HIV reverse transcriptase inhibitors to be incorporated by SARS-CoV RdRp where they also terminate further polymerase extension. Given the 98% amino acid similarity of the SARS-CoV and SARS-CoV-2 RdRps, we expect these nucleotide analogues would also inhibit the SARS-CoV-2 polymerase. These results offer guidance to further modify these nucleotide analogues to generate more potent broad-spectrum anti-coronavirus agents.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Betacoronavirus/enzimología , COVID-19 , Carbamatos/farmacología , Infecciones por Coronavirus/virología , Didesoxinucleótidos/farmacología , Combinación de Medicamentos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Sofosbuvir/farmacología , Nucleótidos de Timina/farmacología , Zidovudina/análogos & derivados , Zidovudina/farmacología
15.
J Proteome Res ; 19(11): 4690-4697, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692185

RESUMEN

SARS-CoV-2 is responsible for the current COVID-19 pandemic. On the basis of our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues (the triphosphates of Sofosbuvir, Alovudine, and AZT) inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). We also demonstrated that a library of additional nucleotide analogues terminate RNA synthesis catalyzed by the SARS-CoV-2 RdRp, a well-established drug target for COVID-19. Here, we used polymerase extension experiments to demonstrate that the active triphosphate form of Sofosbuvir (an FDA-approved hepatitis C drug) is incorporated by SARS-CoV-2 RdRp and blocks further incorporation. Using the molecular insight gained from the previous studies, we selected the active triphosphate forms of six other antiviral agents, Alovudine, Tenofovir alafenamide, AZT, Abacavir, Lamivudine, and Emtricitabine, for evaluation as inhibitors of the SARS-CoV-2 RdRp and demonstrated the ability of these viral polymerase inhibitors to be incorporated by SARS-CoV-2 RdRp, where they terminate further polymerase extension with varying efficiency. These results provide a molecular basis for inhibition of the SARS-CoV-2 RdRp by these nucleotide analogues. If sufficient efficacy of some of these FDA-approved drugs in inhibiting viral replication in cell culture is established, they may be explored as potential COVID-19 therapeutics.


Asunto(s)
Antivirales , Betacoronavirus , ARN Polimerasa Dependiente del ARN , Proteínas no Estructurales Virales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Betacoronavirus/enzimología , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/virología , Didesoxinucleósidos/química , Didesoxinucleósidos/metabolismo , Didesoxinucleósidos/farmacología , Humanos , Pandemias , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Sofosbuvir/química , Sofosbuvir/metabolismo , Sofosbuvir/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
16.
bioRxiv ; 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32511320

RESUMEN

SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 pandemic. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). Here, using polymerase extension experiments, we have demonstrated that the active triphosphate form of Sofosbuvir (a key component of the FDA approved hepatitis C drug EPCLUSA), is incorporated by SARS-CoV-2 RdRp, and blocks further incorporation. Using the same molecular insight, we selected the active triphosphate forms of three other anti-viral agents, Alovudine, AZT (an FDA approved HIV/AIDS drug) and Tenofovir alafenamide (TAF, an FDA approved drug for HIV and hepatitis B) for evaluation as inhibitors of SARS-CoV-2 RdRp. We demonstrated the ability of these three viral polymerase inhibitors, 3'-fluoro-3'-deoxythymidine triphosphate, 3'-azido-3'-deoxythymidine triphosphate and Tenofovir diphosphate (the active triphosphate forms of Alovudine, AZT and TAF, respectively) to be incorporated by SARS-CoV-2 RdRp, where they also terminate further polymerase extension. These results offer a strong molecular basis for these nucleotide analogues to be evaluated as potential therapeutics for COVID-19.

17.
Antiviral Res ; 180: 104857, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32562705

RESUMEN

SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2' or 3' modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base. The goal is to identify nucleotide analogues that not only terminate RNA synthesis catalyzed by these coronavirus RdRps, but also have the potential to resist the viruses' exonuclease activity. We examined these nucleotide analogues for their ability to be incorporated by the RdRps in the polymerase reaction and to prevent further incorporation. While all 11 molecules tested displayed incorporation, 6 exhibited immediate termination of the polymerase reaction (triphosphates of Carbovir, Ganciclovir, Stavudine and Entecavir; 3'-OMe-UTP and Biotin-16-dUTP), 2 showed delayed termination (Cidofovir diphosphate and 2'-OMe-UTP), and 3 did not terminate the polymerase reaction (2'-F-dUTP, 2'-NH2-dUTP and Desthiobiotin-16-UTP). The coronaviruses possess an exonuclease that apparently requires a 2'-OH at the 3'-terminus of the growing RNA strand for proofreading. In this study, all nucleoside triphosphate analogues evaluated form Watson-Crick-like base pairs. The nucleotide analogues demonstrating termination either lack a 2'-OH, have a blocked 2'-OH, or show delayed termination. Thus, these nucleotide analogues are of interest for further investigation to evaluate whether they can evade the viral exonuclease activity. Prodrugs of five of these nucleotide analogues (Cidofovir, Abacavir, Valganciclovir/Ganciclovir, Stavudine and Entecavir) are FDA-approved medications for treatment of other viral infections, and their safety profiles are well established. After demonstrating potency in inhibiting viral replication in cell culture, candidate molecules can be rapidly evaluated as potential therapies for COVID-19.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/virología , Nucleótidos/farmacología , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Antivirales/química , Antivirales/uso terapéutico , Betacoronavirus/enzimología , Betacoronavirus/genética , COVID-19 , Cidofovir/química , Cidofovir/farmacología , Cidofovir/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Didesoxinucleósidos/química , Didesoxinucleósidos/farmacología , Didesoxinucleósidos/uso terapéutico , Ganciclovir/química , Ganciclovir/farmacología , Ganciclovir/uso terapéutico , Guanina/análogos & derivados , Guanina/química , Guanina/farmacología , Guanina/uso terapéutico , Nucleótidos/química , Nucleótidos/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , ARN Viral/antagonistas & inhibidores , ARN Viral/biosíntesis , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Estavudina/química , Estavudina/farmacología , Estavudina/uso terapéutico , Valganciclovir/química , Valganciclovir/farmacología , Valganciclovir/uso terapéutico
18.
J Biol Chem ; 295(15): 4780-4781, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277065

RESUMEN

The nucleotide analogue remdesivir is an investigational drug for the treatment of human coronavirus infection. Remdesivir is a phosphoramidate prodrug and is known to target viral RNA-dependent RNA polymerases. In this issue, Gordon et al. identify that remdesivir acts as a delayed RNA chain terminator for MERS-CoV polymerase complexes.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Coronavirus/fisiología , Infecciones por Coronavirus/virología , Exonucleasas , Humanos , Pandemias , Replicación Viral/efectos de los fármacos
19.
Cell Rep ; 30(11): 3755-3765.e7, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187547

RESUMEN

Rational immunogen design aims to focus antibody responses to vulnerable sites on primary antigens. Given the size of these antigens, there is, however, potential for eliciting unwanted, off-target responses. Here, we use our electron microscopy polyclonal epitope mapping approach to describe the antibody specificities elicited by immunization of non-human primates with soluble HIV envelope trimers and subsequent repeated viral challenge. An increased diversity of epitopes recognized and the approach angle by which these antibodies bind constitute a hallmark of the humoral response in most protected animals. We also show that fusion peptide-specific antibodies are likely responsible for some neutralization breadth. Moreover, cryoelectron microscopy (cryo-EM) analysis of a fully protected animal reveals a high degree of clonality within a subset of putatively neutralizing antibodies, enabling a detailed molecular description of the antibody paratope. Our results provide important insights into the immune response against a vaccine candidate that entered into clinical trials in 2019.


Asunto(s)
Formación de Anticuerpos/inmunología , Anticuerpos Anti-VIH/inmunología , Multimerización de Proteína , Vacunación , Vacunas de Subunidad/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Reacciones Cruzadas/inmunología , Microscopía por Crioelectrón , Epítopos/química , Epítopos/inmunología , Células HEK293 , Anticuerpos Anti-VIH/química , Humanos , Inmunidad Humoral , Macaca mulatta , Modelos Moleculares
20.
Viruses ; 12(1)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952352

RESUMEN

For highly pathogenic viruses, reporter assays that can be rapidly performed are critically needed to identify potentially functional mutations for further study under maximal containment (e.g., biosafety level 4 [BSL-4]). The Ebola virus nucleoprotein (NP) plays multiple essential roles during the viral life cycle, yet few tools exist to study the protein under BSL-2 or equivalent containment. Therefore, we adapted reporter assays to measure NP oligomerization and virion-like particle (VLP) production in live cells and further measured transcription and replication using established minigenome assays. As a proof-of-concept, we examined the NP-R111C substitution, which emerged during the 2013‒2016 Western African Ebola virus disease epidemic and rose to high frequency. NP-R111C slightly increased NP oligomerization and VLP budding but slightly decreased transcription and replication. By contrast, a synthetic charge-reversal mutant, NP-R111E, greatly increased oligomerization but abrogated transcription and replication. These results are intriguing in light of recent structures of NP oligomers, which reveal that the neighboring residue, K110, forms a salt bridge with E349 on adjacent NP molecules. By developing and utilizing multiple reporter assays, we find that the NP-111 position mediates a complex interplay between NP's roles in protein structure, virion budding, and transcription and replication.


Asunto(s)
Aminoácidos/química , Ebolavirus/genética , Genoma Viral , Proteínas de la Nucleocápside/química , Liberación del Virus , Aminoácidos/genética , Ebolavirus/química , Ebolavirus/fisiología , Células HEK293 , Humanos , Proteínas de la Nucleocápside/genética , Prueba de Estudio Conceptual , Virión/fisiología , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...