Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; 29(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28561903

RESUMEN

The underlying hypothalamic neurocircuitry by which metabolism and feeding regulates reproductive function has been well-studied in the rodent; however, recent data have demonstrated significant neuroanatomical differences in the human brain. The present study had three objectives, centred on arcuate nucleus neuropeptides regulating feeding and reproduction: (i) to characterise coexpression patterns in the female nonhuman primate; (ii) to establish whether these neuronal populations make potential contacts with gonadotophin-releasing hormone (GnRH) neurones; and (iii) to determine whether these contacts differ between the low and high GnRH-releasing states of pre-puberty and adulthood, respectively. Female nonhuman primates have several coexpression patterns of hypothalamic neuropeptides that differ from those reported in rodents. Cocaine- and amphetamine-regulated transcript (CART) is not coexpressed with pro-opiomelanocortin but instead with neuropeptide Y (NPY). CART is also expressed in a subpopulation of kisspeptin cells in the nonhuman primate, similar to observations in humans but diverging from findings in rodents. Very few GnRH-expressing neurones received close appositions from double-labelled kisspeptin/CART fibres; however, both single-labelled kisspeptin and CART fibres were in frequent apposition with GnRH neurones, with no differences between prepubertal and adult animals. NPY/agouti-related peptide (AgRP) coexpressing fibres contacted significantly more GnRH neurones in prepubertal animals than adults, consistent with increased NPY and AgRP mRNA observed in prepubertal animals. The findings of the present study detail significant differences in arcuate nucleus neuropeptide coexpression in the monkey compared to the rodent and are consistent with the hypothesis that arcuate nucleus NPY/AgRP neurones play an inhibitory role in controlling GnRH neuronal regulation in the prepubertal primate.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Macaca mulatta , Factores de Edad , Proteína Relacionada con Agouti/metabolismo , Animales , Recuento de Células , Femenino , Kisspeptinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo
2.
J Neuroendocrinol ; 23(11): 1099-112, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21518032

RESUMEN

Low levels of the adipocyte hormone leptin are considered to be the key signal contributing to inhibited gonadotrophin-releasing hormone (GnRH) release and reproductive acyclicity during negative energy balance. Hypoleptinaemia-induced inhibition of GnRH may be initiated with upstream inhibition of the secretagogue kisspeptin (Kiss1) because GnRH neurones do not express leptin receptors. The present study aimed to determine whether eliminating the hypoleptinaemia associated with caloric restriction (CR), by restoring leptin to normal basal levels, could reverse the suppression of the reproductive neuroendocrine axis. Fifty percent CR resulted in significant suppression of anteroventral periventricular Kiss1 mRNA, arcuate nucleus (ARH) Kiss1 and neurokinin B (NKB) mRNA levels and serum luteinising hormone (LH). Restoring leptin to normal basal levels did not restore Kiss1 or NKB mRNA or LH levels. Surprisingly, leptin did not activate expression of phosphorylated signal-transducer and activator of transcription-3 in ARC Kiss1 neurones, indicating that these neurones may not relay leptin signalling to GnRH neurones. Previous work in fasting models showing restoration of LH used a pharmacological dose of leptin. Therefore, in a 48-h fast study, replacement of leptin to pharmacological levels was compared with replacement of leptin to normal basal levels. Maintaining leptin at normal basal levels during the fast did not prevent inhibition of LH. By contrast, pharmacological levels of leptin did maintain LH at control values. These results suggest that, although leptin may be a permissive signal for reproductive function, hypoleptinaemia is unlikely to be the critical signal responsible for ARC Kiss1 and LH inhibition during negative energy balance.


Asunto(s)
Metabolismo Energético , Kisspeptinas/metabolismo , Leptina/fisiología , Hormona Luteinizante/metabolismo , Animales , Restricción Calórica , Femenino , Hipotálamo/metabolismo , Inmunohistoquímica , Kisspeptinas/genética , Leptina/farmacología , Hormona Luteinizante/sangre , ARN Mensajero/genética , Radioinmunoensayo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...