Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37581939

RESUMEN

The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.


Asunto(s)
Leptina , Obesidad , Ratones , Animales , Leptina/genética , Leptina/metabolismo , Obesidad/genética , Obesidad/prevención & control , Obesidad/metabolismo , Hipotálamo/metabolismo , Ratones Noqueados , Neuronas GABAérgicas/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Ingestión de Alimentos/genética
2.
Am J Physiol Endocrinol Metab ; 324(6): E577-E588, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37134140

RESUMEN

Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate ß-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future ß-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter ß-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Embarazo , Animales , Masculino , Femenino , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Occidental/efectos adversos , Primates/metabolismo , Expresión Génica , Islotes Pancreáticos/metabolismo
3.
Elife ; 102021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34018926

RESUMEN

The ventromedial hypothalamic nucleus (VMH) controls diverse behaviors and physiologic functions, suggesting the existence of multiple VMH neural subtypes with distinct functions. Combing translating ribosome affinity purification with RNA-sequencing (TRAP-seq) data with single-nucleus RNA-sequencing (snRNA-seq) data, we identified 24 mouse VMH neuron clusters. Further analysis, including snRNA-seq data from macaque tissue, defined a more tractable VMH parceling scheme consisting of six major genetically and anatomically differentiated VMH neuron classes with good cross-species conservation. In addition to two major ventrolateral classes, we identified three distinct classes of dorsomedial VMH neurons. Consistent with previously suggested unique roles for leptin receptor (Lepr)-expressing VMH neurons, Lepr expression marked a single dorsomedial class. We also identified a class of glutamatergic VMH neurons that resides in the tuberal region, anterolateral to the neuroanatomical core of the VMH. This atlas of conserved VMH neuron populations provides an unbiased starting point for the analysis of VMH circuitry and function.


Asunto(s)
Familia de Multigenes , Neuronas/fisiología , Transcriptoma , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Análisis por Conglomerados , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genotipo , Ácido Glutámico/metabolismo , Macaca mulatta , Ratones Transgénicos , Neuronas/metabolismo , Fenotipo , RNA-Seq , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Especificidad de la Especie , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R929-R939, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32130027

RESUMEN

Women in low- and middle-income countries frequently consume a protein-deficient diet during pregnancy and breastfeeding. The effects of gestational malnutrition on fetal and early postnatal development can have lasting adverse effects on offspring metabolism. Expanding on previous studies in rodent models, we utilized a nonhuman primate model of gestational and early-life protein restriction (PR) to evaluate effects on the organ development and glucose metabolism of juvenile offspring. Offspring were born to dams that had consumed a control diet containing 26% protein or a PR diet containing 13% protein. Offspring were maintained on the PR diet and studied [body and serum measurements, intravenous glucose tolerance tests (ivGTTs), and dual-energy X-ray absorptiometry scans] up to 7 mo of age, at which time tissues were collected for analysis. PR offspring had age-appropriate body weight and were euglycemic but exhibited elevated fasting insulin and reduced initial, but increased total, insulin secretion during an ivGTT at 6 mo of age. No changes were detected in pancreatic islets of PR juveniles; however, PR did induce changes, including reduced kidney size, and changes in liver, adipose tissue, and muscle gene expression in other peripheral organs. Serum osteocalcin was elevated and bone mineral content and density were reduced in PR juveniles, indicating a significant impact of PR on early postnatal bone development.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta con Restricción de Proteínas , Metabolismo Energético , Retardo del Crecimiento Fetal/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Animales , Glucemia/metabolismo , Composición Corporal , Desarrollo Óseo , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Femenino , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Resistencia a la Insulina , Macaca mulatta , Masculino , Estado Nutricional , Embarazo
5.
Mol Metab ; 26: 18-29, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31230943

RESUMEN

OBJECTIVE: Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. METHODS: Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12-16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. RESULTS: CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. CONCLUSIONS: We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/inducido químicamente , Proteína Reelina
6.
Diabetes ; 68(7): 1462-1472, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048370

RESUMEN

Fibroblast growth factor 1 (FGF1) has been shown to reverse hyperglycemia in diabetic rodent models through peripheral and central administration routes. Previous studies demonstrated that insulin is required for central and peripheral FGF1 metabolic improvements; however, it is unknown if FGF1 targets insulin secretion at the islet level. Here we show for the first time that FGF1 increases islet insulin secretion in diabetic mouse models. FGF1 was administered via a single intracerebroventricular or multiple subcutaneous injections to leptin receptor-deficient (db/db), diet-induced obese, and control mice; pancreatic islets were isolated 7 days later for analysis of insulin secretion. Central and peripheral FGF1 significantly lowered blood glucose in vivo and increased ex vivo islet insulin secretion from diabetic, but not control, mice. FGF1 injections to the cisterna magna mimicked intracerebroventricular outcomes, pointing to a novel therapeutic potential. Central effects of FGF1 appeared dependent on reductions in food intake, whereas peripheral FGF1 had acute actions on islet function prior to significant changes in food intake or blood glucose. Additionally, peripheral, but not central, FGF1 increased islet ß-cell density, suggesting that peripheral FGF1 may induce long-term changes in islet structure and function that are not present with central treatment.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Factor 1 de Crecimiento de Fibroblastos/administración & dosificación , Prueba de Tolerancia a la Glucosa , Inmunohistoquímica , Infusiones Intraventriculares , Inyecciones Subcutáneas , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-30258403

RESUMEN

Maternal obesity and consumption of a high-fat diet (HFD) during pregnancy has a negative impact on offspring, including an increased risk for the development of obesity in adolescence. The mechanism for this transferred metabolic risk is unclear, but many studies have focused on the brain due to its important role in appetite and body-weight regulation. Two main pathways regulate appetite in the brain; homeostatic regulation that occurs predominantly in hypothalamic circuits and hedonic regulation of feeding that occurs via dopaminergic pathways. The current proposal examined the impact of early HFD exposure on the dopaminergic control of hedonic feeding pathways in a translational nonhuman primate model. Japanese macaque offspring from mothers consuming a control (CTR) or HFD were weaned onto control or HFD at an average 8 months of age yielding four groups: maternal and post-weaning control diet (mCTRpCTR), maternal control diet and post-weaning HFD (mCTRpHFD), maternal HFD and post-weaning control diet (mHFDpCTR) and maternal and post-weaning HFD (mHFDpHFD). Brains from 13-month-old offspring were evaluated for expression of neuropeptides that regulate dopaminergic pathways including orexin, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), and tyrosine hydroxylase expression in the ventral tegmental area (VTA). Orexin cell numbers in the LH were significantly increased in animals exposed to a post-weaning HFD, while no difference was observed for orexin mRNA content or MCH cell numbers. Orexin fiber projections to the rostral VTA were significantly reduced in mCTRpHFD, mHFDpCTR, and mHFDpHFD groups, but these differences were not significant in the caudal VTA. There was no difference in the percentage of dopamine neurons receiving close appositions from orexin fibers in either the rostral or caudal VTA, nor was there any difference between groups in the number of orexin contacts per TH cell. In conclusion, the current study finds that prolonged early exposure to HFD during the in utero and postnatal period causes alterations at several levels in the dopaminergic circuits regulating reward.

8.
Am J Physiol Regul Integr Comp Physiol ; 313(2): R169-R179, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404581

RESUMEN

Maternal high-fat-diet (HFD) consumption during pregnancy decreased fetal body weight and impacted development of hypothalamic melanocortin neural circuitry in nonhuman primate offspring. We investigated whether these impairments during gestation persisted in juvenile offspring and examined the interaction between maternal and early postnatal HFD consumption. Adult dams consumed either a control diet (CTR; 15% calories from fat) or a high-saturated-fat diet (HFD; 37% calories from fat) during pregnancy. Offspring were weaned onto a CTR or HFD at ~8 mo of age. Offspring from HFD-fed dams displayed early catch-up growth and elevated body weight at 6 and 13 mo of age. Maternal and postnatal HFD exposure reduced the amount of agouti-related peptide fibers in the paraventricular nucleus of the hypothalamus. Postnatal HFD consumption also decreased the amount of agouti-related peptide fibers in the arcuate nucleus of the hypothalamus. Postnatal HFD was associated with decreased food intake and increased activity. These results support and extend our previous findings of maternal diet effects on fetal development and reveal, for the first time in a nonhuman primate model, that maternal HFD-induced disturbances in offspring body weight regulation extended past gestation into the juvenile period. Maternal HFD consumption increases the risk for offspring developing obesity, with the developmental timing of HFD exposure differentially impacting the melanocortin system and energy balance regulation. The present findings provide translational insight into human clinical populations, suggesting that profound health consequences may await individuals later in life following intrauterine and postnatal HFD exposure.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos , Hipotálamo/fisiopatología , Melanocortinas/metabolismo , Obesidad/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Metabolismo Energético , Conducta Alimentaria , Femenino , Desarrollo Fetal , Humanos , Macaca , Masculino , Obesidad/etiología , Embarazo , Preñez , Transducción de Señal
9.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28144621

RESUMEN

Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status, and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide 1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. Because GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased after a 48-h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin(9-39), in ad libitum-fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Ayuno/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/sangre , Neuronas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Implantes de Medicamentos , Ingestión de Alimentos/fisiología , Estradiol/administración & dosificación , Estrógenos/administración & dosificación , Femenino , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Péptidos Similares al Glucagón/metabolismo , Hormona Luteinizante/antagonistas & inhibidores , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Ovariectomía , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Técnicas de Cultivo de Tejidos
10.
Obesity (Silver Spring) ; 23(11): 2157-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26530932

RESUMEN

OBJECTIVE: To utilize a nonhuman primate model to examine the impact of maternal high-fat diet (HFD) consumption and pre-pregnancy obesity on offspring intake of palatable food and to examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding. METHODS: The impact of exposure to maternal HFD and obesity on offspring consumption of diets of varying composition was assessed after weaning. The influence of maternal HFD consumption on the development of the prefrontal cortex-dopaminergic system at 13 months of age was also examined. RESULTS: During a preference test, offspring exposed to maternal HFD consumption and obesity displayed increased intake of food high in fat and sugar content relative to offspring from lean control mothers. Maternal HFD consumption suppressed offspring dopamine signaling (as assessed by immunohistochemistry) relative to control offspring. Specifically, there was decreased abundance of dopamine fibers and of dopamine receptor 1 and 2 proteins. CONCLUSIONS: This study reveals that offspring exposed to both maternal HFD consumption and maternal obesity during early development are at increased risk for obesity due to overconsumption of palatable energy-dense food, a behavior that may be related to reduced central dopamine signaling.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/metabolismo , Complicaciones del Embarazo/metabolismo , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Alimentaria/fisiología , Femenino , Masculino , Modelos Animales , Obesidad/etiología , Embarazo , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Primates , Transducción de Señal , Gusto/fisiología
11.
J Neurosci ; 35(22): 8558-69, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26041922

RESUMEN

Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9-10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Neuronas/fisiología , Sinapsis/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/genética , Tetrodotoxina/farmacología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/farmacología
12.
Endocrinology ; 156(1): 255-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25380238

RESUMEN

Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract, where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography, and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding, including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate, although a few key species differences were identified, including the amygdala, where GLP-1R expression is much higher in primate than in rodent.


Asunto(s)
Encéfalo/metabolismo , ARN Mensajero/metabolismo , Receptores de Glucagón/metabolismo , Animales , Anticuerpos , Especificidad de Anticuerpos , Regulación de la Expresión Génica/fisiología , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Hibridación in Situ , Macaca mulatta , Masculino , Unión Proteica , ARN Mensajero/genética , Receptores de Glucagón/genética , Distribución Tisular
13.
J Neurosci ; 34(30): 9982-94, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25057200

RESUMEN

Leptin is well known for its role in the regulation of energy homeostasis in adults, a mechanism that at least partially results from the inhibition of the activity of NPY/AgRP/GABA neurons (NAG) in the arcuate nucleus of the hypothalamus (ARH). During early postnatal development in the rodent, leptin promotes axonal outgrowth from ARH neurons, and preautonomic NAG neurons are particularly responsive to leptin's trophic effects. To begin to understand how leptin could simultaneously promote axonal outgrowth from and inhibit the activity of NAG neurons, we characterized the electrochemical effects of leptin on NAG neurons in mice during early development. Here, we show that NAG neurons do indeed express a functional leptin receptor throughout the early postnatal period in the mouse; however, at postnatal days 13-15, leptin causes membrane depolarization in NAG neurons, rather than the expected hyperpolarization. Leptin action on NAG neurons transitions from stimulatory to inhibitory in the periweaning period, in parallel with the acquisition of functional ATP-sensitive potassium channels. These findings are consistent with the idea that leptin provides an orexigenic drive through the NAG system to help rapidly growing pups meet their energy requirements.


Asunto(s)
Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Leptina/fisiología , Neuronas/fisiología , Receptores de Leptina/fisiología , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Masculino , Ratones , Ratones Transgénicos , Receptores de Leptina/biosíntesis
14.
Neuroendocrinology ; 99(3-4): 190-203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25011649

RESUMEN

BACKGROUND/AIMS: Kisspeptin is the major excitatory regulator of gonadotropin-releasing hormone (GnRH) neurons and is responsible for basal GnRH/LH release and the GnRH/LH surge. Although it is widely assumed, based on mutations in kisspeptin and Kiss1R, that kisspeptin acts to sustain basal GnRH neuronal activity, there have been no studies to investigate whether endogenous basal kisspeptin tone plays a direct role in basal spontaneous GnRH neuronal excitability. It is also of interest to examine possible interactions between endogenous kisspeptin tone and other neuropeptides that have direct effects on GnRH neurons, such as neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART), since the activity of all these neuropeptides changes during states of negative energy balance. METHODS: Loose cell-attached and whole-cell current patch-clamp recordings were made from GnRH-GFP neurons in hypothalamic slices from female and male rats. RESULTS: Kisspeptin activated GnRH neurons in a concentration-dependent manner with an EC50 of 3.32 ± 0.02 nM. Surprisingly, a kisspeptin antagonist, Peptide 347, suppressed spontaneous activity in GnRH neurons, demonstrating the essential nature of the endogenous kisspeptin tone. Furthermore, inhibition of endogenous kisspeptin tone blocked the direct activation of GnRH cells that occurs in response to antagonism of NPY Y5 receptor or by CART. CONCLUSIONS: Our electrophysiology studies suggest that basal endogenous kisspeptin tone is not only essential for spontaneous GnRH neuronal firing, but it is also required for the net excitatory effects of other neuropeptides, such as CART or NPY antagonism, on GnRH neurons. Therefore, endogenous kisspeptin tone could serve as the linchpin in GnRH activation or inhibition.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Kisspeptinas/metabolismo , Proteínas del Tejido Nervioso/farmacología , Neuronas/efectos de los fármacos , Neuropéptido Y/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Estradiol/farmacología , Femenino , Hormona Liberadora de Gonadotropina/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Kisspeptinas/antagonistas & inhibidores , Kisspeptinas/farmacología , Masculino , Neuronas/fisiología , Ovariectomía , Técnicas de Placa-Clamp , Área Preóptica/citología , Ratas , Ratas Transgénicas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
15.
Circulation ; 129(4): 471-8, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24163066

RESUMEN

BACKGROUND: Inflammation and insulin resistance (IR) are associated processes that potentiate risk for cardiovascular disease in obesity. The temporal relation between IR and inflammation is not completely characterized. We hypothesized that endothelial cell adhesion molecule expression in large arteries is an early event that coincides with diet-induced obesity and IR in primates. METHODS AND RESULTS: Ten adult male rhesus macaques were studied at baseline and every 4 to 6 months on a high-fat diet for 2 years. Truncal fat, carotid intima-media thickness, plasma inflammatory biomarkers, and carotid P-selectin and vascular cell adhesion molecule-1 expression by contrast-enhanced ultrasound molecular imaging were assessed. Intravenous glucose tolerance test was performed at baseline and at 4 and 18 months. A high-fat diet produced a rapid increase (P<0.01) in weight, truncal fat, and degree of IR indicated by the insulin area under the curve and glucose disappearance rate on intravenous glucose tolerance test, all of which worsened minimally thereafter. Molecular imaging detected a progressive increase in endothelial cell adhesion molecule expression over time (5- to 7-fold greater than control agent signal at 2 years; P<0.01). Changes in intima-media thickness were not detected until 2 years and, although there was a trend toward an increase in plasma markers of inflammation (monocyte chemotactic protein-1, C-reactive protein), the pattern of increase varied considerably over time. CONCLUSIONS: In primates with diet-induced obesity, endothelial inflammatory activation is an early event that occurs coincident with the development of IR and long before any measurable change in carotid intima-media thickness. Endothelial activation is related more to the duration rather than to the severity of IR and is not mirrored by changes in plasma biomarkers.


Asunto(s)
Arterias Carótidas/fisiopatología , Progresión de la Enfermedad , Endotelio Vascular/fisiopatología , Resistencia a la Insulina/fisiología , Macaca mulatta/fisiología , Obesidad/fisiopatología , Vasculitis/fisiopatología , Animales , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/metabolismo , Grosor Intima-Media Carotídeo , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/metabolismo , Masculino , Microburbujas , Técnicas de Diagnóstico Molecular , Obesidad/metabolismo , Selectina-P/metabolismo , Factores de Tiempo , Ultrasonografía Intervencional , Molécula 1 de Adhesión Celular Vascular/metabolismo , Vasculitis/metabolismo
16.
J Neurosci ; 33(38): 15306-17, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24048859

RESUMEN

Neuropeptide Y (NPY) neurons in both the arcuate nucleus of the hypothalamus (ARH) and the dorsomedial hypothalamus (DMH) have been implicated in food intake and obesity. However, while ARH NPY is highly expressed in the lean animal, DMH NPY mRNA expression is observed only after diet-induced obesity (DIO). Furthermore, while ARH NPY neurons are inhibited by leptin, the effect of this adipokine on DMH NPY neurons is unknown. In this study we show that in contrast to the consistent expression in the ARH, DMH NPY mRNA expression was undetectable until after 10 weeks in mice fed a high-fat diet, and peaked at 20 weeks. Surprisingly, electrophysiological experiments demonstrated that leptin directly depolarized and increased the firing rate of DMH NPY neurons in DIO mice. To further differentiate the regulation of DMH and ARH NPY populations, fasting decreased expression of DMH NPY expression, while it increased ARH NPY expression. However, treatment with a leptin receptor antagonist failed to alter DMH NPY expression, indicating that leptin may not be the critical factor regulating mRNA expression. Importantly, we also demonstrated that DMH NPY neurons coexpress cocaine amphetamine-regulated transcript (CART); however, CART mRNA expression in the DMH peaked earlier in the progression of DIO. This study demonstrates novel and important findings. First, NPY and CART are coexpressed in the same neurons within the DMH, and second, leptin stimulates DMH NPY neurons. These studies suggest that during the progression of DIO, there is an unknown signal that drives the expression of the orexigenic NPY signal within the DMH, and that the chronic hyperleptinemia increases the activity of these NPY/CART neurons.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Leptina/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Obesidad/patología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Análisis de Varianza , Animales , Dieta/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Hipotálamo/patología , Técnicas In Vitro , Insulina/sangre , Leptina/antagonistas & inhibidores , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuropéptido Y/genética , Obesidad/sangre , Obesidad/etiología , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Radioinmunoensayo , Factor de Transcripción STAT3/metabolismo , Factores de Tiempo
17.
J Comp Neurol ; 521(8): 1891-914, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23172177

RESUMEN

The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To understand better the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA- and NPY-colabeled fibers were limited mainly to the hypothalamus, including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA-and NPY-colabeled axonal swellings were in close apposition to cocaine- and amphetamine-regulated transcript (CART)-expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa), these projections did not contain NPY immunoreactivity in either the lactating rat or the DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem.


Asunto(s)
Vías Eferentes/metabolismo , Hiperfagia/patología , Hipotálamo/citología , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Obesidad/patología , Factores de Edad , Animales , Animales Recién Nacidos , Biotina/análogos & derivados , Enfermedad Crónica , Dextranos , Modelos Animales de Enfermedad , Vías Eferentes/fisiología , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ácido Láctico/metabolismo , Masculino , Melaninas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Obesidad/etiología , Orexinas , Fragmentos de Péptidos/metabolismo , Hormonas Hipofisarias/metabolismo , Embarazo , Ratas , Ratas Wistar , Triptófano Hidroxilasa/metabolismo
18.
J Neuroendocrinol ; 23(1): 52-64, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21029216

RESUMEN

Lactation results in negative energy balance in the rat leading to decreased gonadotrophin-releasing hormone (GnRH) release and anoestrus. Inhibited GnRH release may be a result of decreased stimulatory tone from neuropeptides critical for GnRH neuronal activity, such as kisspeptin (Kiss1) and neurokinin B (NKB). The present study aimed to identify neuronal projections from the colocalised population of Kiss1/NKB cells in the arcuate nucleus (ARH) using double-label immunohistochemistry to determine where this population may directly regulate GnRH neuronal activity. Additionally, the present study further examined lactation-induced changes in the Kiss1 system that could play a role in decreased GnRH release. The colocalised ARH Kiss1/NKB fibres projected primarily to the internal zone of the median eminence (ME) where they were in close proximity to GnRH fibres; however, few Kiss1/NKB fibres from the ARH were seen at the level of GnRH neurones in the preoptic area (POA). Arcuate Kiss1/NKB peptide levels were decreased during lactation consistent with previous mRNA data. Surprisingly, anteroventral periventricular (AVPV) Kiss1 peptide levels were increased, whereas Kiss1 mRNA levels were decreased during lactation, suggesting active inhibition of peptide release. These findings indicate ARH Kiss1/NKB and AVPV Kiss1 appear to be inhibited during lactation, which may contribute to decreased GnRH release and subsequent reproductive dysfunction. Furthermore, the absence of a strong ARH Kiss1/NKB projection to the POA suggests regulation of GnRH by this population occurs primarily at the ME level via local projections.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Lactancia , Neuroquinina B/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Femenino , Inmunohistoquímica , Hibridación in Situ , Kisspeptinas , Microscopía Confocal , Ratas , Ratas Wistar
19.
Brain Res ; 1350: 139-50, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20380814

RESUMEN

The Dorsomedial Nucleus of the Hypothalamus (DMH) is known to play important roles in ingestive behavior and body weight homeostasis. The DMH contains neurons expressing Neuropeptide Y (NPY) during specific physiological conditions of hyperphagia and obesity, however, the role of DMH-NPY neurons has yet to be characterized. In contrast to the DMH-NPY neurons, NPY expressing neurons have been best characterized in the Arcuate Nucleus of the Hypothalamus (ARH). The purpose of this study is to characterize the chemical phenotype of DMH-NPY neurons by comparing the gene expression profiles of NPY neurons in the DMH and ARH isolated from postnatal NPY-hrGFP mice by microarray analysis. Twenty genes were differentially expressed in the DMH-NPY neurons compared to the ARH. Among them, there were several transcriptional factors that play important roles in the regulation of energy balance. DMH-NPY neurons expressed Glutamic Acid Decarboxylase (GAD) 65 and 67, suggesting that they may be GABAergic, similar to ARH-NPY neurons. While ARH-NPY neurons expressed leptin receptor (ObRb) and displayed the activation of STAT3 in response to leptin administration, DMH-NPY neurons showed neither. These findings strongly suggest that DMH-NPY neurons could play a distinct role in the control of energy homeostasis and are differentially regulated from ARH-NPY neurons through afferent inputs and transcriptional regulators.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/metabolismo , Perfilación de la Expresión Génica , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Animales , Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Inmunohistoquímica , Hibridación in Situ , Leptina/genética , Leptina/metabolismo , Ratones , Ratones Transgénicos , Microdisección , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Endocrinology ; 151(4): 1598-610, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20194730

RESUMEN

Childhood obesity increases the risk of adult obesity and diabetes, suggesting that early overnutrition permanently programs altered energy and glucose homeostasis. In the present studies, we used a mouse model to investigate whether early overnutrition increases susceptibility to obesity and insulin resistance in response to a high-fat diet (HFD). Litters from Swiss Webster dams were culled to three [chronic postnatal overnutrition (CPO)] or 10 (control) pups and then weaned onto standard chow at postnatal day (P) 23. At 6 wk of age, a subset of mice was placed on HFD, and glucose and insulin tolerance were examined at 16-17 wk of age. Leptin sensitivity was determined by hypothalamic phosphorylated signal transducer and activator of transcription-3 immunoreactivity at P16 and adulthood after ip leptin. CPO mice exhibited accelerated body weight gain and hyperleptinemia during the preweaning period but only a slightly heavier body weight and normal glucose tolerance in adulthood on standard chow diet. Importantly, CPO mice exhibited significant leptin resistance in the arcuate nucleus, demonstrated by reduced activation of phospho-signal transducer and activator of transcription-3, as early as P16 and throughout life, despite normalized leptin levels. In response to HFD, CPO but not control mice displayed insulin resistance in response to an insulin tolerance test. In conclusion, CPO mice exhibited early and persistent leptin resistance in the arcuate nucleus and, in response to HFD, rapid development of obesity and insulin resistance. These studies suggest that early overnutrition can permanently alter energy homeostasis and significantly increase susceptibility to obesity and insulin resistance.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Grasas de la Dieta/metabolismo , Leptina/metabolismo , Hipernutrición/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Área Bajo la Curva , Glucemia , Peso Corporal/genética , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Prueba de Tolerancia a la Glucosa , Inmunohistoquímica , Insulina/metabolismo , Resistencia a la Insulina/genética , Leptina/farmacología , Ratones , Actividad Motora/fisiología , Hipernutrición/genética , Fosforilación/fisiología , Radioinmunoensayo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...