Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(6): 9923-9934, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157556

RESUMEN

We present a method extending scanning third-order correlator temporal pulse evolution measurement capabilities of high power short pulse lasers to spectral sensitivity within the spectral range exploited by typical chirped pulse amplification systems. Modelling of the spectral response achieved by angle tuning of the third harmonic generating crystal is applied and experimentally validated. Exemplary measurements of spectrally resolved pulse contrast of a Petawatt laser frontend illustrate the importance of full bandwidth coverage for the interpretation of relativistic laser target interaction in particular for the case of solid targets.

2.
Light Sci Appl ; 12(1): 71, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914618

RESUMEN

Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.

3.
Sci Rep ; 12(1): 16753, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224197

RESUMEN

Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 [Formula: see text] [Formula: see text] 10[Formula: see text]/MeV/sr/shot with an energy of 2.8 [Formula: see text] MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications.

4.
Opt Express ; 29(20): 32404-32411, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615312

RESUMEN

We developed an optically synchronized highly stable frequency-doubled Nd:YAG laser with sub-nanosecond pulse duration. The 1064 nm seed pulses generated by soliton self-frequency shift in a photonic crystal fiber from Ti:sapphire oscillator pulses were stabilized by controlling input pulse polarization. The seed pulses were amplified to 200 mJ by diode-pumped amplifiers with a high stability of only <0.2% (rms). With an external LBO doubler, the system generated 330 ps green pulse energy of 130 mJ at 532 nm with a conversion efficiency of 65%. The pulse duration was further extended to 490 ps by adjusting Nd:YAG crystal temperature. To the best of our knowledge, these results present a longer pulse duration with higher stability than previous Nd:YAG lasers with sub-nanosecond optical synchronization.

5.
Sci Rep ; 11(1): 16283, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381072

RESUMEN

A new diagnosis method for the discriminative detection of laser-accelerated multi-MeV carbon ions from background oxygen ions utilizing solid-state nuclear track detectors (SSNTDs) is proposed. The idea is to combine two kinds of SSNTDs having different track registration sensitivities: Bisphenol A polycarbonate detects carbon and the heavier ions, and polyethylene terephthalate detects oxygen and the heavier ions. The method is calibrated with mono-energetic carbon and oxygen ion beams from the heavy ion accelerator. Based on the calibration data, the method is applied to identify carbon ions accelerated from multilayered graphene targets irradiated by a high-power laser, where the generation of high-energy high-purity carbon ions is expected. It is found that 93 ± 1% of the accelerated heavy ions with energies larger than 14 MeV are carbons. The results thus obtained support that carbon-rich heavy ion acceleration is achieved.

6.
Opt Lett ; 45(5): 1100-1103, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32108780

RESUMEN

We experimentally explore the generation of pre-pulses by post-pulses, created through internal reflection in the optical components, by the nonlinear process associated with the B-integral in the laser chain of the petawatt (PW) facility J-KAREN-P. At a large time delay between the main and the post-pulses, we have found that the pre-pulses are not generated from their counterpart post-pulses at an identical time difference before the main pulse, and the temporal shapes of the pre-pulses are greatly distorted asymmetrically. We have also observed that the peak intensities of the pre-pulses are drastically suppressed compared to the expected value at a small time delay. We briefly describe the origins of the pre-pulses generated by the post-pulses and demonstrate the removal of the pre-pulses by switching to optical components with a small wedge angle at our PW laser facility.

7.
Opt Lett ; 43(11): 2595-2598, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856438

RESUMEN

We report the generation of 63 J of broadband pulse energies at 0.1 Hz from the J-KAREN-P laser, which is based on an OPCPA/Ti:sapphire hybrid architecture. Pulse compression down to 30 fs indicates a peak power of over 1 PW. High temporal contrast of 1012 prior to the main pulse has been demonstrated with 10 J output energy. High intensities of 1022 W/cm2 on target by focusing a 0.3 PW laser with an f/1.3 off-axis parabolic mirror have been achieved. Fundamental processes of laser matter interaction at over 1022 W/cm2 intensities belong to a new branch of science that will be the principal research task of our infrastructure.

8.
Opt Express ; 25(17): 20486-20501, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29041729

RESUMEN

J-KAREN-P is a high-power laser facility aiming at the highest beam quality and irradiance for performing state-of-the art experiments at the frontier of modern science. Here we approached the physical limits of the beam quality: diffraction limit of the focal spot and bandwidth limit of the pulse shape, removing the chromatic aberration, angular chirp, wavefront and spectral phase distortions. We performed accurate measurements of the spot and peak fluence after an f/1.3 off-axis parabolic mirror under the full amplification at the power of 0.3 PW attenuated with ten high-quality wedges, resulting in the irradiance of ~1022 W/cm2 and the Strehl ratio of ~0.5.

9.
Rev Sci Instrum ; 87(6): 063307, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27370447

RESUMEN

We propose a simple and effective synchronization technique between a reference electrical oscillator and a mode-locked laser for a narrowband picosecond Laser-Compton scattering γ-ray source by using a commercial-based 1-chip frequency synthesizer, which is widely used in radio communication. The mode-locked laser has been successfully synchronized in time with a jitter of 180 fs RMS for 10 Hz-100 kHz bandwidth. A good stability of 640 µHz at 80 MHz repetition rate for 10 h operation has also been confirmed. We discuss in detail the design and performance of this technique (in terms of timing jitter, stability, and validity).

10.
Opt Lett ; 37(14): 2868-70, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22825161

RESUMEN

Using a high-contrast (10(10):1) and high-intensity (10(21) W/cm(2)) laser pulse with the duration of 40 fs from an optical parametric chirped-pulse amplification/Ti:sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.

11.
Opt Lett ; 37(16): 3363-5, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23381258

RESUMEN

We demonstrate the temporal contrast enhancement in a petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser system. An extra saturable absorber, introduced downstream after a low-gain optical parametric chirped-pulse amplification (OPCPA) preamplifier, has improved the temporal contrast in the system to 1.4×10(12) on the subnanosecond time scale at 70 TW power level. We have achieved 28 J of uncompressed broadband output energy with this system, indicating the potential for reaching peak powers near 600 TW.

12.
Opt Lett ; 36(9): 1614-6, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540945

RESUMEN

The interaction between a 25 TW laser and Xe clusters at a peak intensity of 1 × 10¹9 W/cm² has been investigated. Xe K-shell x rays, whose energies are approximately 30 keV, were clearly observed with a hard x-ray CCD at 3.4 MPa. Moreover, we studied the yield of the Xe K-shell x rays by changing the pulse duration of the laser at a constant laser energy and found that the pulse duration of 40 fs is better than that of 300 fs for generating Xe K-shell x rays.

13.
Opt Lett ; 35(18): 3048-50, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20847774

RESUMEN

We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.

14.
Opt Lett ; 35(10): 1497-9, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20479787

RESUMEN

Optical parametric chirped-pulse amplification (OPCPA) operation with low gain by seeding with high-energy, clean pulses is shown to significantly improve the contrast to better than 10(-10) to 10(-11) in a high-intensity Ti:sapphire laser system that is based on chirped-pulse amplification. In addition to the high-contrast broadband, high-energy output from the final amplifier is achieved with a flat-topped spatial profile of filling factor near 77%. This is the result of pump beam spatial profile homogenization with diffractive optical elements. Final pulse energies exceed 30 J, indicating capability for reaching peak powers in excess of 500 TW.


Asunto(s)
Óxido de Aluminio , Rayos Láser , Titanio , Factores de Tiempo
15.
Appl Opt ; 49(11): 2105-15, 2010 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-20390013

RESUMEN

We have developed a femtosecond high-intensity laser system that combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric CPA (OPCPA) techniques and produces more than 30 J broadband output energy, indicating the potential for achieving peak powers in excess of 500 TW. With a cleaned high-energy seeded OPCPA preamplifier as a front end in the system, for the compressed pulse without pumping the final amplifier, we found that the temporal contrast in this system exceeds 10(10) on the subnanosecond time scales, and is near 10(12) on the nanosecond time scale prior to the peak of the main femtosecond pulse. Using diffractive optical elements for beam homogenization of a 100 J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with a near-perfect top-hat-like intensity distribution.


Asunto(s)
Rayos Láser , Óptica y Fotónica , Óxido de Aluminio/química , Amplificadores Electrónicos , Diseño de Equipo , Riesgo , Procesamiento de Señales Asistido por Computador/instrumentación , Factores de Tiempo , Titanio/química
16.
Opt Lett ; 33(7): 645-7, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18382504

RESUMEN

We report a high-contrast, high-intensity Ti:sapphire chirped-pulse amplification system that incorporates a nonlinear preamplifier based on optical parametric chirped-pulse amplification (OPCPA). By cooling the Ti:sapphire crystal in the final amplifier down to 77 K, the chirped-pulses are amplified to 2.9 J at a 10 Hz repetition rate without a thermal lensing effect. Pulse compression down to 19 fs duration obtained after amplification indicates a peak power of 80 TW. With the OPCPA, the temporal contrast is significantly improved to better than 7x10(-9) in a few picoseconds interval prior to the main laser pulse.

17.
Opt Lett ; 32(16): 2315-7, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17700770

RESUMEN

We describe a compact, reliable, high-power, and high-contrast noncollinear optical parametric chirped-pulse amplifier system. With a broadband Ti:sapphire oscillator and grating-based stretching and compression, the chirped pulses are amplified from 0.1 nJ to 122 mJ in type I beta-barium borate optical parametric chirped-pulse amplifiers with a total gain of over 10(9) at 10 Hz repetition rate. Pulse compression down to 19-fs duration achieved after amplification indicates a peak power of 3.2 TW at an average power of 0.62 W. The prepulse contrast is measured to be less than 10(-8) on picosecond time scales.

18.
Opt Express ; 14(1): 438-45, 2006 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19503358

RESUMEN

We have built a prepulse-free, multi-terawatt, ultrashort pulse laser system, which combines both conventional laser amplification and optical parametric chirped pulse amplification (OPCPA) techniques. By employing an OPCPA system after the regenerative amplifier in a Ti:sapphire chirped pulse amplification laser chain, we have dramatically enhanced the prepulse contrast by 6 orders of magnitude. A prepulse contrast of better than 4.4 x 10-11 has been measured with a high energy broadband pulse of 24 mJ at 10 Hz repetition rate from the OPCPA system. Using a subsequent four-pass Ti:sapphire amplifier, we have achieved an amplified energy of 279 mJ and an ultrashort recompressed amplified pulse duration of 23.5 fs, corresponding to the peak powers for OPCPA and four-pass amplifier of 0.5 TW and 5.9 TW, respectively.

19.
Opt Lett ; 28(18): 1671-3, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-13677532

RESUMEN

We report a high-average-power laser-diode-pumped Nd:YAG master oscillator power amplifier system that has a minimum number of elements in the single multipass zigzag-slab amplifier stage and is used to pump a high-peak-power and high-average-power Ti:sapphire laser system. This phase-conjugated system produces an average power of 362 W at 1 kHz in a 30-ns pulse with an optical-to-optical conversion efficiency of 14%. With an external KTP doubler this system generates 132 W of green average output power at 1 kHz with a conversion efficiency of 60% when pumped at a power level of 222 W. To the best of our knowledge these results represent the highest average output power at both infrared and green wavelengths achieved in a single amplifier stage.

20.
Opt Express ; 10(19): 1028-32, 2002 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19451960

RESUMEN

We have demonstrated the generation of a high-energy green laser pulse using large aperture CsLiB6O10 (CLBO) crystals for the first time to our knowledge. A pulsed energy of 25 J at 532-nm was generated using the 1064-nm incident Nd:glass laser radiation with an energy of 34 J. High conversion efficiency of 74 % at intensities of only 370 MW/cm2 was obtained using a two-stage crystal architecture. This result represents the highest green pulse energy ever reported using the CLBO crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...