Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
JMIR Form Res ; 8: e50035, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691395

RESUMEN

BACKGROUND: Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies. OBJECTIVE: The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied to the wrist position to those applied to lower back-worn inertial sensors. METHODS: Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared to gait detection performance using lower back-worn inertial sensors. RESULTS: The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98 (SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%) per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids. CONCLUSIONS: Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical studies and public health. TRIAL REGISTRATION: ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1136/bmjopen-2021-050785.

3.
Sci Rep ; 14(1): 1754, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243008

RESUMEN

This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987.


Asunto(s)
Velocidad al Caminar , Dispositivos Electrónicos Vestibles , Humanos , Anciano , Marcha , Caminata , Proyectos de Investigación
4.
Front Neurol ; 14: 1247532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909030

RESUMEN

Introduction: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of -0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, -0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.

5.
J Parkinsons Dis ; 13(6): 999-1009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545259

RESUMEN

BACKGROUND: Real-world walking speed (RWS) measured using wearable devices has the potential to complement the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) for motor assessment in Parkinson's disease (PD). OBJECTIVE: Explore cross-sectional and longitudinal differences in RWS between PD and older adults (OAs), and whether RWS was related to motor disease severity cross-sectionally, and if MDS-UPDRS III was related to RWS, longitudinally. METHODS: 88 PD and 111 OA participants from ICICLE-GAIT (UK) were included. RWS was evaluated using an accelerometer at four time points. RWS was aggregated within walking bout (WB) duration thresholds. Between-group-comparisons in RWS between PD and OAs were conducted cross-sectionally, and longitudinally with mixed effects models (MEMs). Cross-sectional association between RWS and MDS-UPDRS III was explored using linear regression, and longitudinal association explored with MEMs. RESULTS: RWS was significantly lower in PD (1.04 m/s) in comparison to OAs (1.10 m/s) cross-sectionally. RWS significantly decreased over time for both cohorts and decline was more rapid in PD by 0.02 m/s per year. Significant negative relationship between RWS and the MDS-UPDRS III only existed at a specific WB threshold (30 to 60 s, ß= - 3.94 points, p = 0.047). MDS-UPDRS III increased significantly by 1.84 points per year, which was not related to change in RWS. CONCLUSION: Digital mobility assessment of gait may add unique information to quantify disease progression remotely, but further validation in research and clinical settings is needed.


Asunto(s)
Enfermedad de Parkinson , Humanos , Anciano , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Estudios Transversales , Gravedad del Paciente , Índice de Severidad de la Enfermedad , Modelos Lineales
6.
Sensors (Basel) ; 23(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37430796

RESUMEN

Low levels of physical activity (PA) and sleep disruption are commonly seen in older adult inpatients and are associated with poor health outcomes. Wearable sensors allow for objective continuous monitoring; however, there is no consensus as to how wearable sensors should be implemented. This review aimed to provide an overview of the use of wearable sensors in older adult inpatient populations, including models used, body placement and outcome measures. Five databases were searched; 89 articles met inclusion criteria. We found that studies used heterogenous methods, including a variety of sensor models, placement and outcome measures. Most studies reported the use of only one sensor, with either the wrist or thigh being the preferred location in PA studies and the wrist for sleep outcomes. The reported PA measures can be mostly characterised as the frequency and duration of PA (Volume) with fewer measures relating to intensity (rate of magnitude) and pattern of activity (distribution per day/week). Sleep and circadian rhythm measures were reported less frequently with a limited number of studies providing both physical activity and sleep/circadian rhythm outcomes concurrently. This review provides recommendations for future research in older adult inpatient populations. With protocols of best practice, wearable sensors could facilitate the monitoring of inpatient recovery and provide measures to inform participant stratification and establish common objective endpoints across clinical trials.


Asunto(s)
Pacientes Internos , Dispositivos Electrónicos Vestibles , Humanos , Anciano , Muñeca , Ejercicio Físico , Sueño
7.
J Neuroeng Rehabil ; 20(1): 78, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316858

RESUMEN

BACKGROUND: Although digital mobility outcomes (DMOs) can be readily calculated from real-world data collected with wearable devices and ad-hoc algorithms, technical validation is still required. The aim of this paper is to comparatively assess and validate DMOs estimated using real-world gait data from six different cohorts, focusing on gait sequence detection, foot initial contact detection (ICD), cadence (CAD) and stride length (SL) estimates. METHODS: Twenty healthy older adults, 20 people with Parkinson's disease, 20 with multiple sclerosis, 19 with proximal femoral fracture, 17 with chronic obstructive pulmonary disease and 12 with congestive heart failure were monitored for 2.5 h in the real-world, using a single wearable device worn on the lower back. A reference system combining inertial modules with distance sensors and pressure insoles was used for comparison of DMOs from the single wearable device. We assessed and validated three algorithms for gait sequence detection, four for ICD, three for CAD and four for SL by concurrently comparing their performances (e.g., accuracy, specificity, sensitivity, absolute and relative errors). Additionally, the effects of walking bout (WB) speed and duration on algorithm performance were investigated. RESULTS: We identified two cohort-specific top performing algorithms for gait sequence detection and CAD, and a single best for ICD and SL. Best gait sequence detection algorithms showed good performances (sensitivity > 0.73, positive predictive values > 0.75, specificity > 0.95, accuracy > 0.94). ICD and CAD algorithms presented excellent results, with sensitivity > 0.79, positive predictive values > 0.89 and relative errors < 11% for ICD and < 8.5% for CAD. The best identified SL algorithm showed lower performances than other DMOs (absolute error < 0.21 m). Lower performances across all DMOs were found for the cohort with most severe gait impairments (proximal femoral fracture). Algorithms' performances were lower for short walking bouts; slower gait speeds (< 0.5 m/s) resulted in reduced performance of the CAD and SL algorithms. CONCLUSIONS: Overall, the identified algorithms enabled a robust estimation of key DMOs. Our findings showed that the choice of algorithm for estimation of gait sequence detection and CAD should be cohort-specific (e.g., slow walkers and with gait impairments). Short walking bout length and slow walking speed worsened algorithms' performances. Trial registration ISRCTN - 12246987.


Asunto(s)
Tecnología Digital , Fracturas Femorales Proximales , Humanos , Anciano , Marcha , Caminata , Velocidad al Caminar , Modalidades de Fisioterapia
8.
Front Bioeng Biotechnol ; 11: 1143248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214281

RESUMEN

Introduction: Accurately assessing people's gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors). Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity. Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72-4.87 steps/min, stride length 0.04-0.06 m, walking speed 0.03-0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions.

9.
Cells ; 12(3)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766825

RESUMEN

Quantum dots are nanoparticles (2-10 nm) that emit strong and tunable fluorescence. Quantum dots have been heavily used in high-demand commercialized products, research, and for medical purposes. Emerging concerns have demonstrated the negative impact of quantum dots on living cells; however, the intracellular trafficking of QDs in yeast cells and the effect of this interaction remains unclear. The primary goal of our research is to investigate the trafficking path of red cadmium selenide zinc sulfide quantum dots (CdSe/ZnS QDs) in Saccharomyces cerevisiae and the impact QDs have on yeast cellular dynamics. Using cells with GFP-tagged reference organelle markers and confocal microscopy, we were able to track the internalization of QDs. We found that QDs initially aggregate at the exterior of yeast cells, enter the cell using clathrin-receptor-mediated endocytosis, and distribute at the late Golgi/trans-Golgi network. We also found that the treatment of red CdSe/ZnS QDs resulted in growth rate reduction and loss of polarized growth in yeast cells. Our RNA sequence analysis revealed many altered genes. Particularly, we found an upregulation of DID2, which has previously been associated with cell cycle arrest when overexpressed, and a downregulation of APS2, a gene that codes for a subunit of AP2 protein important for the recruitment of proteins to clathrin-mediated endocytosis vesicle. Furthermore, CdSe/ZnS QDs treatment resulted in a slightly delayed endocytosis and altered the actin dynamics in yeast cells. We found that QDs caused an increased level of F-actin and a significant reduction in profilin protein expression. In addition, there was a significant elevation in the amount of coronin protein expressed, while the level of cofilin was unchanged. Altogether, this suggests that QDs favor the assembly of actin filaments. Overall, this study provides a novel toxicity mechanism of red CdSe/ZnS QDs on yeast actin dynamics and cellular processes, including endocytosis.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Saccharomyces cerevisiae , Compuestos de Cadmio/toxicidad , Compuestos de Selenio/farmacología , Puntos Cuánticos/metabolismo , Actinas , Citoesqueleto de Actina
10.
Sci Data ; 10(1): 38, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658136

RESUMEN

Wearable devices are used in movement analysis and physical activity research to extract clinically relevant information about an individual's mobility. Still, heterogeneity in protocols, sensor characteristics, data formats, and gold standards represent a barrier for data sharing, reproducibility, and external validation. In this study, we aim at providing an example of how movement data (from the real-world and the laboratory) recorded from different wearables and gold standard technologies can be organized, integrated, and stored. We leveraged on our experience from a large multi-centric study (Mobilise-D) to provide guidelines that can prove useful to access, understand, and re-use the data that will be made available from the study. These guidelines highlight the encountered challenges and the adopted solutions with the final aim of supporting standardization and integration of data in other studies and, in turn, to increase and facilitate comparison of data recorded in the scientific community. We also provide samples of standardized data, so that both the structure of the data and the procedure can be easily understood and reproduced.

11.
J Neuroeng Rehabil ; 19(1): 141, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36522646

RESUMEN

BACKGROUND: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. METHODS: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants' strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson's disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. RESULTS: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. CONCLUSIONS: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. TRIAL REGISTRATION: ISRCTN-12246987.


Asunto(s)
Marcha , Enfermedad de Parkinson , Adulto , Humanos , Caminata , Velocidad al Caminar , Proyectos de Investigación
12.
BMJ Open ; 11(12): e050785, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857567

RESUMEN

INTRODUCTION: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real-world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users' perspective on the device. METHODS AND ANALYSIS: This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs.After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson's disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users' perspective on the deployed technology and relevance of the mobility assessment. ETHICS AND DISSEMINATION: The study has been granted ethics approval by the centre's committees (London-Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv Sourasky Medical Centre; Medical Faculties of The University of Tübingen and of the University of Kiel). Data and algorithms will be made publicly available. TRIAL REGISTRATION NUMBER: ISRCTN (12246987).


Asunto(s)
Esclerosis Múltiple , Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Anciano , Marcha , Humanos , Proyectos de Investigación
13.
NPJ Digit Med ; 4(1): 149, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650191

RESUMEN

Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice.

14.
J Parkinsons Dis ; 11(s1): S35-S47, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33523020

RESUMEN

The increasing prevalence of neurodegenerative conditions such as Parkinson's disease (PD) and related mobility issues places a serious burden on healthcare systems. The COVID-19 pandemic has reinforced the urgent need for better tools to manage chronic conditions remotely, as regular access to clinics may be problematic. Digital health technology in the form of remote monitoring with body-worn sensors offers significant opportunities for transforming research and revolutionizing the clinical management of PD. Significant efforts are being invested in the development and validation of digital outcomes to support diagnosis and track motor and mobility impairments "off-line". Imagine being able to remotely assess your patient, understand how well they are functioning, evaluate the impact of any recent medication/intervention, and identify the need for urgent follow-up before overt, irreparable change takes place? This could offer new pragmatic solutions for personalized care and clinical research. So the question remains: how close are we to achieving this? Here, we describe the state-of-the-art based on representative papers published between 2017 and 2020. We focus on remote (i.e., real-world, daily-living) monitoring of PD using body-worn sensors (e.g., accelerometers, inertial measurement units) for assessing motor symptoms and their complications. Despite the tremendous potential, existing challenges exist (e.g., validity, regulatory) that are preventing the widespread clinical adoption of body-worn sensors as a digital outcome. We propose a roadmap with clear recommendations for addressing these challenges and future directions to bring us closer to the implementation and widespread adoption of this important way of improving the clinical care, evaluation, and monitoring of PD.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Enfermedad de Parkinson/diagnóstico , Dispositivos Electrónicos Vestibles , Humanos
15.
Inorg Chem ; 59(24): 18407-18419, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33296192

RESUMEN

The synthesis, structure, and thermal stability of the periodate double perovskites A2NaIO6 (A= Ba, Sr, Ca) were investigated in the context of potential application for the immobilization of radioiodine. A combination of X-ray diffraction and neutron diffraction, Raman spectroscopy, and DFT simulations were applied to determine accurate crystal structures of these compounds and understand their relative stability. The compounds were found to exhibit rock-salt ordering of Na and I on the perovskite B-site; Ba2NaIO6 was found to adopt the Fm-3m aristotype structure, whereas Sr2NaIO6 and Ca2NaIO6 adopt the P21/n hettotype structure, characterized by cooperative octahedral tilting. DFT simulations determined the Fm-3m and P21/n structures of Ba2NaIO6 to be energetically degenerate at room temperature, whereas diffraction and spectroscopy data evidence only the presence of the Fm-3m phase at room temperature, which may imply an incipient phase transition for this compound. The periodate double perovskites were found to exhibit remarkable thermal stability, with Ba2NaIO6 only decomposing above 1050 °C in air, which is apparently the highest recorded decomposition temperature so far recorded for any iodine bearing compound. As such, these compounds offer some potential for application in the immobilization of iodine-129, from nuclear fuel reprocessing, with an iodine incorporation rate of 25-40 wt%. The synthesis of these compounds, elaborated here, is also compatible with both current conventional and future advanced processes for iodine recovery from the dissolver off-gas.

16.
IEEE Open J Eng Med Biol ; 1: 65-73, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35402938

RESUMEN

Objective: Gait may be a useful biomarker that can be objectively measured with wearable technology to classify Parkinson's disease (PD). This study aims to: (i) comprehensively quantify a battery of commonly utilized gait digital characteristics (spatiotemporal and signal-based), and (ii) identify the best discriminative characteristics for the optimal classification of PD. Methods: Six partial least square discriminant analysis (PLS-DA) models were trained on subsets of 210 characteristics measured in 142 subjects (81 people with PD, 61 controls (CL)). Results: Models accuracy ranged between 70.42-88.73% (AUC: 78.4-94.5%) with a sensitivity of 72.84-90.12% and a specificity of 60.3-86.89%. Signal-based digital gait characteristics independently gave 87.32% accuracy. The most influential characteristics in the classification models were related to root mean square values, power spectral density, step velocity and length, gait regularity and age. Conclusions: This study highlights the importance of signal-based gait characteristics in the development of tools to help classify PD in the early stages of the disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...