Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0149223, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299813

RESUMEN

The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.


Asunto(s)
Ciervos , Rumen , Humanos , Animales , Anaerobiosis , Rumen/microbiología , Herbivoria , Hongos/genética , Rumiantes
2.
BMC Genomics ; 24(1): 551, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723422

RESUMEN

BACKGROUND: Producing animal protein while reducing the animal's impact on the environment, e.g., through improved feed efficiency and lowered methane emissions, has gained interest in recent years. Genetic selection is one possible path to reduce the environmental impact of livestock production, but these traits are difficult and expensive to measure on many animals. The rumen microbiome may serve as a proxy for these traits due to its role in feed digestion. Restriction enzyme-reduced representation sequencing (RE-RRS) is a high-throughput and cost-effective approach to rumen metagenome profiling, but the systematic (e.g., sequencing) and biological factors influencing the resulting reference based (RB) and reference free (RF) profiles need to be explored before widespread industry adoption is possible. RESULTS: Metagenome profiles were generated by RE-RRS of 4,479 rumen samples collected from 1,708 sheep, and assigned to eight groups based on diet, age, time off feed, and country (New Zealand or Australia) at the time of sample collection. Systematic effects were found to have minimal influence on metagenome profiles. Diet was a major driver of differences between samples, followed by time off feed, then age of the sheep. The RF approach resulted in more reads being assigned per sample and afforded greater resolution when distinguishing between groups than the RB approach. Normalizing relative abundances within the sampling Cohort abolished structures related to age, diet, and time off feed, allowing a clear signal based on methane emissions to be elucidated. Genus-level abundances of rumen microbes showed low-to-moderate heritability and repeatability and were consistent between diets. CONCLUSIONS: Variation in rumen metagenomic profiles was influenced by diet, age, time off feed and genetics. Not accounting for environmental factors may limit the ability to associate the profile with traits of interest. However, these differences can be accounted for by adjusting for Cohort effects, revealing robust biological signals. The abundances of some genera were consistently heritable and repeatable across different environments, suggesting that metagenomic profiles could be used to predict an individual's future performance, or performance of its offspring, in a range of environments. These results highlight the potential of using rumen metagenomic profiles for selection purposes in a practical, agricultural setting.


Asunto(s)
Metagenoma , Microbiota , Animales , Ovinos/genética , Rumen , Ganado , Metano
3.
Front Microbiol ; 13: 918111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071968

RESUMEN

Methane is produced in the rumen of ruminant livestock by methanogens, accounting for approximately 14.5% of anthropogenic greenhouse gas emissions in terms of global warming potential. The rumen contains a diversity of methanogens species, and only a few of these have been cultured. Immunomagnetic capture technology (ICT) is a simple and effective method to capture and concentrate target organisms in samples containing complex microflora. We hypothesized that antibody-coated magnetic beads could be used to demonstrate antibody specificity and cross-reactivity to methanogens in rumen samples. Sheep polyclonal antibodies raised against four isolates of rumen dwelling methanogens, Methanobrevibacter ruminantium strain M1, Methanobrevibacter sp. AbM4, Methanobrevibacter sp. D5, and Methanobrevibacter sp. SM9 or an equal mix of all four isolates, were used to coat paramagnetic beads. ICT was used together with flow cytometry and qPCR to optimize key parameters: the ratio of antibody to beads, coupling time between antibody and paramagnetic beads to produce immunomagnetic beads (IMBs), and optimal incubation time for the capture of methanogen cells by IMBs. Under optimized conditions, IMBs bound strongly to their respective isolates and showed a degree of cross-reactivity with isolates of other Methanobrevibacter spp. in buffer and in rumen fluid, and with resident methanogens in rumen content samples. The evidence provided here indicates that this method can be used to study the interaction of antibodies with antigens of rumen methanogens, to understand antigen cross-reactivity and antibody binding efficiency for the evaluation of antigens used for the development of a broad-spectrum anti-methanogen vaccine for the abatement of methane production.

4.
Sci Rep ; 11(1): 3836, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589656

RESUMEN

Anthelmintic treatment of adult ewes is widely practiced to remove parasite burdens in the expectation of increased ruminant productivity. However, the broad activity spectra of many anthelmintic compounds raises the possibility of impacts on the rumen microbiota. To investigate this, 300 grazing ewes were allocated to treatment groups that included a 100-day controlled release capsule (CRC) containing albendazole and abamectin, a long-acting moxidectin injection (LAI), and a non-treated control group (CON). Rumen bacterial, archaeal and protozoal communities at day 0 were analysed to identify 36 sheep per treatment with similar starting compositions. Microbiota profiles, including those for the rumen fungi, were then generated for the selected sheep at days 0, 35 and 77. The CRC treatment significantly impacted the archaeal community, and was associated with increased relative abundances of Methanobrevibacter ruminantium, Methanosphaera sp. ISO3-F5, and Methanomassiliicoccaceae Group 12 sp. ISO4-H5 compared to the control group. In contrast, the LAI treatment increased the relative abundances of members of the Veillonellaceae and resulted in minor changes to the bacterial and fungal communities by day 77. Overall, the anthelmintic treatments resulted in few, but highly significant, changes to the rumen microbiota composition.


Asunto(s)
Antihelmínticos/farmacología , Microbiota/efectos de los fármacos , Rumen/microbiología , Animales , Antihelmínticos/administración & dosificación , Biodiversidad , Duración de la Terapia , Disbiosis/etiología , Ovinos , Enfermedades de las Ovejas/tratamiento farmacológico , Enfermedades de las Ovejas/parasitología
5.
PLoS One ; 15(4): e0219882, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32243481

RESUMEN

Microbial community profiles have been associated with a variety of traits, including methane emissions in livestock. These profiles can be difficult and expensive to obtain for thousands of samples (e.g. for accurate association of microbial profiles with traits), therefore the objective of this work was to develop a low-cost, high-throughput approach to capture the diversity of the rumen microbiome. Restriction enzyme reduced representation sequencing (RE-RRS) using ApeKI or PstI, and two bioinformatic pipelines (reference-based and reference-free) were compared to bacterial 16S rRNA gene sequencing using repeated samples collected two weeks apart from 118 sheep that were phenotypically extreme (60 high and 58 low) for methane emitted per kg dry matter intake (n = 236). DNA was extracted from freeze-dried rumen samples using a phenol chloroform and bead-beating protocol prior to RE-RRS. The resulting sequences were used to investigate the repeatability of the rumen microbial community profiles, the effect of laboratory and analytical method, and the relationship with methane production. The results suggested that the best method was PstI RE-RRS analyzed with the reference-free approach, which accounted for 53.3±5.9% of reads, and had repeatabilities of 0.49±0.07 and 0.50±0.07 for the first two principal components (PC1 and PC2), phenotypic correlations with methane yield of 0.43±0.06 and 0.46±0.06 for PC1 and PC2, and explained 41±8% of the variation in methane yield. These results were significantly better than for bacterial 16S rRNA gene sequencing of the same samples (p<0.05) except for the correlation between PC2 and methane yield. A Sensitivity study suggested approximately 2000 samples could be sequenced in a single lane on an Illumina HiSeq 2500, meaning the current work using 118 samples/lane and future proposed 384 samples/lane are well within that threshold. With minor adaptations, our approach could be used to obtain microbial profiles from other metagenomic samples.


Asunto(s)
Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Rumen/microbiología , Ovinos/microbiología , Animales , Bacterias/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Masculino , Metagenoma , Metagenómica/economía , Microbiota , ARN Ribosómico 16S/genética
6.
Microbiology (Reading) ; 162(3): 459-465, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26813792

RESUMEN

Only limited information is available on the roles of different rumen ciliate community types, first described by Eadie in 1962, in enteric methane (CH4) formation by their ruminant hosts. If the different types were differentially associated with CH4 formation, then ciliate community typing could be used to identify naturally high and low CH4-emitting animals. Here we measured the CH4 yields [g CH4 (kg feed dry matter intake, DMI)(-1)] of 118 sheep fed a standard pelleted lucerne diet at two different times, at least 2 weeks apart. There were significant differences (P < 2.2 × 10(-16), Wilcoxon rank sum test) in the CH4 yields (± sd) from sheep selected as high [16.7 ± 1.5 g CH4 (kg DMI)(-1)] and low emitters [13.3 ± 1.5 g CH4 (kg DMI)(-1)]. A rumen sample was collected after each of the two measurements, and ciliate composition was analysed using barcoded 454 Titanium pyrosequencing of 18S rRNA genes. The genera found, in order of mean relative abundance, were Epidinium, Entodinium, Dasytricha, Eudiplodinium, Polyplastron, Isotricha and Anoplodinium-Diplodinium, none of which was significantly correlated with the CH4 emissions ranking associated with the rumen sample. Ciliate communities naturally assembled into four types (A, AB, B and O), characterized by the presence and absence of key genera. There was no difference in CH4 yield between sheep that harboured different ciliate community types, suggesting that these did not underlie the natural variation in CH4 yields. Further research is needed to unravel the nature of interactions between ciliate protozoa and other rumen micro-organisms, which may ultimately lead to contrasting CH4 emission phenotypes.


Asunto(s)
Biota , Cilióforos/clasificación , Cilióforos/metabolismo , Dieta/métodos , Medicago sativa/metabolismo , Metano/metabolismo , Rumen/parasitología , Alimentación Animal , Animales , Cilióforos/genética , Cilióforos/aislamiento & purificación , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Ovinos
7.
Appl Environ Microbiol ; 81(21): 7470-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26276109

RESUMEN

Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Biota , Eucariontes/aislamiento & purificación , Mucosa Bucal/microbiología , Rumen/microbiología , Animales , Archaea/clasificación , Bacterias/clasificación , Eucariontes/clasificación , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Ovinos
8.
Appl Environ Microbiol ; 81(7): 2433-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616800

RESUMEN

The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.


Asunto(s)
Biota , Cilióforos/clasificación , Cilióforos/genética , Rumen/parasitología , Animales , Cilióforos/citología , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microscopía , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
9.
PLoS One ; 9(7): e103171, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25078564

RESUMEN

The potent greenhouse gas methane (CH4) is produced in the rumens of ruminant animals from hydrogen produced during microbial degradation of ingested feed. The natural animal-to-animal variation in the amount of CH4 emitted and the heritability of this trait offer a means for reducing CH4 emissions by selecting low-CH4 emitting animals for breeding. We demonstrate that differences in rumen microbial community structure are linked to high and low CH4 emissions in sheep. Bacterial community structures in 236 rumen samples from 118 high- and low-CH4 emitting sheep formed gradual transitions between three ruminotypes. Two of these (Q and S) were linked to significantly lower CH4 yields (14.4 and 13.6 g CH4/kg dry matter intake [DMI], respectively) than the third type (H; 15.9 g CH4/kg DMI; p<0.001). Low-CH4 ruminotype Q was associated with a significantly lower ruminal acetate to propionate ratio (3.7±0.4) than S (4.4±0.7; p<0.001) and H (4.3±0.5; p<0.001), and harbored high relative abundances of the propionate-producing Quinella ovalis. Low-CH4 ruminotype S was characterized by lactate- and succinate-producing Fibrobacter spp., Kandleria vitulina, Olsenella spp., Prevotella bryantii, and Sharpea azabuensis. High-CH4 ruminotype H had higher relative abundances of species belonging to Ruminococcus, other Ruminococcaceae, Lachnospiraceae, Catabacteriaceae, Coprococcus, other Clostridiales, Prevotella, other Bacteroidales, and Alphaproteobacteria, many of which are known to form significant amounts of hydrogen. We hypothesize that lower CH4 yields are the result of bacterial communities that ferment ingested feed to relatively less hydrogen, which results in less CH4 being formed.


Asunto(s)
Bacterias/metabolismo , Metano/metabolismo , Rumen/microbiología , Animales , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...