Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(22): 9525-9535, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758591

RESUMEN

While the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.


Asunto(s)
Trichodesmium , Trichodesmium/metabolismo , Golfo de México , Cianobacterias/metabolismo , Eutrofización , Cromatografía Liquida , Espectrometría de Masas en Tándem
2.
Med Cannabis Cannabinoids ; 5(1): 129-137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467778

RESUMEN

Introduction: Cannabinoids including cannabidiol (CBD) have attracted enormous interest as bioactive ingredients for various dermatological and/or cosmeceutical uses. However, topical applications of cannabinoids might be limited without a fundamental understanding of their skin permeability. Herein, we aimed to evaluate the skin permeability of CBD and its topical formulations using artificial skin membrane assays. The solubility and stability of CBD in various surfactants that are commonly used in topical applications were also evaluated. Methods: CBD and two CBD-incorporated topical formulations (cream and gel) were prepared for this study. Computational predictions (SwissADME and DERMWIN™) and the parallel artificial membrane permeability assay (PAMPA) were used to evaluate the skin permeability of CBD isolate. The Franz cell diffusion (in vitro release testing) assay was used to evaluate the skin permeability of CBD formulations. The solubility and stability of CBD in surfactants were assessed by high-performance liquid chromatography and mass spectrometry analysis. Results: CBD isolate showed favorable skin permeability in the SwissADME and DERMWIN™ predictions (-Log Kp of 3.6 and 5.7 cm/s, respectively) and PAMPA (-LogPe value of 5.0 at pH of 6.5 and 7.4). In addition, CBD had higher solubility (378.4 µg/mL) in surfactant Tween 20 as compared to its solubility in polyisobutene. In an acidic environment (pH 5 and 6), Tween 20 maintained the CBD content at 81% and 70% over 30 days, respectively. CBD in the formulations of cream and gel also had moderate skin permeability in the Franz cell diffusion assay. Conclusion: Data from artificial membrane-based assays support that CBD is a skin permeable cannabinoid and the permeability and stability of its formulations may be influenced by several factors such as surfactant and pH environment. Findings from our study suggest that CBD may have suitable skin permeability for the development of dermatological and/or cosmeceutical applications but further studies using in vivo models are warranted to confirm this.

3.
ACS Omega ; 7(40): 35677-35685, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36249352

RESUMEN

Infections caused by the bacterium Staphylococcus aureus continue to pose threats to human health and put a financial burden on the healthcare system. The overuse of antibiotics has contributed to mutations leading to the emergence of methicillin-resistant S. aureus, and there is a critical need for the discovery and development of new antibiotics to evade drug-resistant bacteria. Medicinal plants have shown promise as sources of new small-molecule therapeutics with potential uses against pathogenic infections. The principal Rhode Island secondary metabolite (PRISM) library is a botanical extract library generated from specimens in the URI Youngken Medicinal Garden by upper-division undergraduate students. PRISM extracts were screened for activity against strains of methicillin-susceptible S. aureus (MSSA). An extract generated from the tulip tree (Liriodendron tulipifera) demonstrated growth inhibition against MSSA, and a bioassay-guided approach identified a sesquiterpene lactone, laurenobiolide, as the active constituent. Intriguingly, its isomers, tulipinolide and epi-tulipinolide, lacked potent activity against MSSA. Laurenobiolide also proved to be more potent against MSSA than the structurally similar sesquiterpene lactones, costunolide and dehydrocostus lactone. Laurenobiolide was the most abundant in the twig bark of the tulip tree, supporting the twig bark's historical and cultural usage in poultices and teas.

4.
Fitoterapia ; 159: 105200, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460834

RESUMEN

Prior to the advent of modern medicine, humans have used botanicals extensively for their therapeutic potential. With the majority of newly approved drugs having their origins in natural products, plants remain at the forefront of drug discovery. Continued research and discovery necessitate the use of high-throughput analytical methods to screen and identify bioactive components and potential therapeutic molecules from plants. Utilizing a pre-generated plant extract library, we subjected botanicals to LC-MS/MS-based molecular networking to determine their chemical composition and relatively quantify already known metabolites. The LC-MS/MS-based molecular networking approach was also used to authenticate the composition of dietary supplements against their corresponding plant specimens. The networking procedures provided concise visual representations of the chemical space and highly informative assessments of the botanicals. The procedures also proved to define the composition of the botanical supplements quickly and efficiently. This offered an innovative approach to metabolite profiling and authentication practices and additionally allowed for the identification of new, putatively unknown metabolites for future isolation and biological evaluation.


Asunto(s)
Suplementos Dietéticos , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Suplementos Dietéticos/análisis , Humanos , Estructura Molecular , Extractos Vegetales/química , Espectrometría de Masas en Tándem/métodos
5.
Limnol Oceanogr ; 67(11): 2341-2359, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36636629

RESUMEN

Diatoms in the Pseudo-nitzschia genus produce the neurotoxin domoic acid. Domoic acid bioaccumulates in shellfish, causing illness in humans and marine animals upon ingestion. In 2017, high domoic acid levels in shellfish meat closed shellfish harvest in Narragansett Bay, Rhode Island for the first and only time in history, although abundant Pseudo-nitzschia have been observed for over 60 years. To investigate whether an environmental factor altered endemic Pseudo-nitzschia physiology or new domoic acid-producing strain(s) were introduced to Narragansett Bay, we conducted weekly sampling from 2017 to 2019 and compared closure samples. Plankton-associated domoic acid was quantified by LC-MS/MS and Pseudo-nitzschia spp. were identified using a taxonomically improved high-throughput rDNA sequencing approach. Comparison with environmental data revealed a detailed understanding of domoic acid dynamics and seasonal multi-species assemblages. Plankton-associated domoic acid was low throughout 2017-2019, but recurred in fall and early summer maxima. Fall domoic acid maxima contained known toxic species as well as a novel Pseudo-nitzschia genotype. Summer domoic acid maxima included fewer species but also known toxin producers. Most 2017 closure samples contained the particularly concerning toxic species, P. australis, which also appeared infrequently during 2017-2019. Recurring Pseudo-nitzschia assemblages were driven by seasonal temperature changes, and plankton-associated domoic acid correlated with low dissolved inorganic nitrogen. Thus, the Narragansett Bay closures were likely caused by both resident assemblages that become toxic depending on nutrient status as well as the episodic introductions of toxic species from oceanographic and climatic shifts.

6.
ACS Omega ; 6(23): 15472-15478, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151125

RESUMEN

Metabolite mining of environmentally collected aquatic and marine microbiomes offers a platform for the discovery of new therapeutic lead molecules. Combining a prefractionated chromatography library with liquid chromatography tandem mass spectrometry (LC-MS/MS)-based molecular networking and biological assays, we isolated and characterized two new micropeptins (1 and 2) along with the previously characterized micropeptin 996. These metabolites showed potency in anti-neuroinflammatory assays using BV-2 mouse microglial cells, showing a 50% reduction in inflammation in a range from 1 to 10 µM. These results show promise for cyanobacterial peptides in the therapeutic realm apart from their impact on environmental health and provide another example of the utility of large prefractionated natural product libraries for therapeutic hit and lead identification.

7.
ACS Chem Neurosci ; 11(24): 4478-4488, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33284578

RESUMEN

To combat the bottlenecks in drug discovery and development, a pipeline to identify neuropharmacological candidates using in silico, in vitro, and receptor specific assays was devised. The focus of this pipeline was to identify metabolites with the ability to reduce neuroinflammation, due to the implications that chronic neuroinflammation has in chronic pain and neurodegenerative diseases. A library of pure compounds isolated from the cyanobacterium Trichodesmium thiebautii was evaluated using this method. In silico analysis of drug likelihood and in vitro permeability analysis using the parallel artificial membrane permeability assay (PAMPA) highlighted multiple metabolites of interest from the library. Murine BV-2 microglia were used in conjunction with the Griess assay to determine if metabolites could reduce lipopolysaccharide induced neuroinflammation followed by analysis of pro-inflammatory cytokine concentrations in the supernatant of the treated cell cultures. The nontoxic metabolite unnarmicin D was further evaluated due to its moderate permeability in the PAMPA assay, promising ADME data, modulation of all cytokines tested, and prediction as an opioid receptor ligand. Molecular modeling of unnarmicin D to the µ and δ opioid receptors showed strong theoretical binding potential to the µ opioid receptor. In vitro binding assays validated this pipeline showing low micromolar binding affinity for the µ opioid receptor launching the potential for further analysis of unnarmicin D derivatives for the treatment of pain and neuroinflammation related diseases.


Asunto(s)
Analgésicos Opioides , Receptores Opioides delta , Animales , Antiinflamatorios , Ratones , Péptidos Cíclicos , Receptores Opioides mu , Trichodesmium
8.
J Nat Prod ; 83(9): 2664-2671, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32816476

RESUMEN

The trichophycin family of compounds are chlorinated polyketides first discovered from environmental collections of a bloom-forming Trichodesmium sp. cyanobacterium. In an effort to fully capture the chemical space of this group of metabolites, the utilization of MS/MS-based molecular networking of a Trichodesmium thiebautii extract revealed a metabolome replete with halogenated compounds. Subsequent MS-guided isolation resulted in the characterization of isotrichophycin C and trichophycins G-I (1-4). These new metabolites had intriguing structural variations from those trichophycins previously characterized, which allowed for a comparative study to examine structural features that are associated with toxicity to murine neuroblastoma cells. Additionally, we propose the absolute configuration of the previously characterized trichophycin A (5). Overall, the metabolome of the Trichodesmium bloom is hallmarked by an unprecedented amount of chlorinated molecules, many of which remain to be structurally characterized.


Asunto(s)
Cianobacterias/química , Trichodesmium/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Cloro/química , ADN/química , ADN/genética , ADN/aislamiento & purificación , Espectrometría de Masas , Metaboloma , Ratones , Estructura Molecular , Filogenia , Espectrometría de Masas en Tándem
9.
Metabolites ; 9(4)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010159

RESUMEN

Increasing evidence supports the beneficial effects of polyphenol-rich diets, including the traditional Mediterranean diet, for the management of cardiovascular disease, obesity and neurodegenerative diseases. However, a common concern when discussing the protective effects of polyphenol-rich diets against diseases is whether these compounds are present in systemic circulation in their intact/parent forms in order to exert their beneficial effects in vivo. Here, we explore two common classes of dietary polyphenols, namely isoflavones and lignans, and their gut microbial-derived metabolites for gut and blood-brain barrier predicted permeability, as well as protection against neuroinflammatory stimuli in murine BV-2 microglia. Polyphenol microbial metabolites (PMMs) generally showed greater permeability through artificial gut and blood-brain barriers compared to their parent compounds. The parent polyphenols and their corresponding PMMs were evaluated for protective effects against lipopolysaccharide-induced inflammation in BV-2 microglia. The lignan-derived PMMs, equol and enterolactone, exhibited protective effects against nitric oxide production, as well as against pro-inflammatory cytokines (IL-6 and TNF-α) in BV-2 microglia. Therefore, PMMs may contribute, in large part, to the beneficial effects attributed to polyphenol-rich diets, further supporting the important role of gut microbiota in human health and disease prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...