Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 175(6): 1688-1700.e14, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415834

RESUMEN

Human brain networks that encode variation in mood on naturalistic timescales remain largely unexplored. Here we combine multi-site, semi-chronic, intracranial electroencephalography recordings from the human limbic system with machine learning methods to discover a brain subnetwork that correlates with variation in individual subjects' self-reported mood over days. First we defined the subnetworks that influence intrinsic brain dynamics by identifying regions that showed coordinated changes in spectral coherence. The most common subnetwork, found in 13 of 21 subjects, was characterized by ß-frequency coherence (13-30 Hz) between the amygdala and hippocampus. Increased variability of this subnetwork correlated with worsening mood across these 13 subjects. Moreover, these subjects had significantly higher trait anxiety than the 8 of 21 for whom this amygdala-hippocampus subnetwork was absent. These results demonstrate an approach for extracting network-behavior relationships from complex datasets, and they reveal a conserved subnetwork associated with a psychological trait that significantly influences intrinsic brain dynamics and encodes fluctuations in mood.


Asunto(s)
Afecto , Amígdala del Cerebelo/fisiopatología , Ansiedad/fisiopatología , Hipocampo/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Electroencefalografía , Femenino , Humanos , Aprendizaje Automático , Masculino , Procesamiento de Señales Asistido por Computador
2.
Neuron ; 91(2): 210-3, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27477012

RESUMEN

In this issue of Neuron, Hultman et al. (2016) find that stress-induced abnormal social behavior reflects aberrant prefrontal regulation of downstream limbic networks. This illustrates how linking aberrant network dynamics to neuropsychiatric disorders may lead to new circuit-based therapeutic interventions.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Conducta Social , Apoyo Social , Estrés Fisiológico/fisiología , Humanos
3.
J Neurosci ; 36(26): 6892-905, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358448

RESUMEN

UNLABELLED: Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown. Here, we investigate the neural circuit that underlies the ipRGC-driven light response in developing mice. We use a combination of calcium imaging, tracer coupling, and electrophysiology experiments to show that ipRGCs form extensive gap junction networks that strongly contribute to the overall light response of the developing retina. Interestingly, we found that gap junction coupling was modulated by spontaneous retinal waves, such that acute blockade of waves dramatically increased the extent of coupling and hence increased the number of light-responsive neurons. Moreover, using an optical sensor, we found that this wave-dependent modulation of coupling is driven by dopamine that is phasically released by retinal waves. Our results demonstrate that ipRGCs form gap junction microcircuits during development that are modulated by retinal waves; these circuits determine the extent of the light response and thus potentially impact the processing of early visual information and light-dependent developmental functions. SIGNIFICANCE STATEMENT: Light-dependent functions in early development are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Here we show that ipRGCs form an extensive gap junction network with other retinal neurons, including other ipRGCs, which shapes the retina's overall light response. Blocking cholinergic retinal waves, which are the primary source of neural activity before maturation of photoreceptors, increased the extent of ipRGC gap junction networks, thus increasing the number of light-responsive cells. We determined that this modulation of ipRGC gap junction networks occurs via dopamine released by waves. These results demonstrate that retinal waves mediate dopaminergic modulation of gap junction networks to regulate pre-vision light responses.


Asunto(s)
Potenciales Evocados/fisiología , Red Nerviosa/fisiología , Retina/citología , Células Ganglionares de la Retina/fisiología , Animales , Animales Recién Nacidos , Biotina/análogos & derivados , Biotina/metabolismo , Dihidro-beta-Eritroidina/farmacología , Dopamina/metabolismo , Potenciales Evocados/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/genética , Humanos , Técnicas In Vitro , Recién Nacido , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Neurotransmisores/farmacología , Estimulación Luminosa , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Factor de Transcripción Brn-3A/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Nature ; 509(7499): 195-200, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24695230

RESUMEN

The formation of precise connections between retina and lateral geniculate nucleus (LGN) involves the activity-dependent elimination of some synapses, with strengthening and retention of others. Here we show that the major histocompatibility complex (MHC) class I molecule H2-D(b) is necessary and sufficient for synapse elimination in the retinogeniculate system. In mice lacking both H2-K(b) and H2-D(b) (K(b)D(b)(-/-)), despite intact retinal activity and basal synaptic transmission, the developmentally regulated decrease in functional convergence of retinal ganglion cell synaptic inputs to LGN neurons fails and eye-specific layers do not form. Neuronal expression of just H2-D(b) in K(b)D(b)(-/-) mice rescues both synapse elimination and eye-specific segregation despite a compromised immune system. When patterns of stimulation mimicking endogenous retinal waves are used to probe synaptic learning rules at retinogeniculate synapses, long-term potentiation (LTP) is intact but long-term depression (LTD) is impaired in K(b)D(b)(-/-) mice. This change is due to an increase in Ca(2+)-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Restoring H2-D(b) to K(b)D(b)(-/-) neurons renders AMPA receptors Ca(2+) impermeable and rescues LTD. These observations reveal an MHC-class-I-mediated link between developmental synapse pruning and balanced synaptic learning rules enabling both LTD and LTP, and demonstrate a direct requirement for H2-D(b) in functional and structural synapse pruning in CNS neurons.


Asunto(s)
Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Antígeno de Histocompatibilidad H-2D/metabolismo , Vías Nerviosas , Retina/citología , Retina/fisiología , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Antígenos H-2/genética , Antígenos H-2/inmunología , Antígenos H-2/metabolismo , Antígeno de Histocompatibilidad H-2D/genética , Antígeno de Histocompatibilidad H-2D/inmunología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Transmisión Sináptica
5.
Neuron ; 80(5): 1129-44, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24314725

RESUMEN

Before the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete. In this review, we discuss recent experimental and theoretical progress toward the process of activity-dependent refinement, focusing on circuits in the visual, auditory, and motor systems. Although many outstanding questions remain, the combination of several novel approaches has brought us closer to a comprehensive understanding of how complex neural circuits are established by patterned spontaneous activity during development.


Asunto(s)
Encéfalo/citología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Animales , Encéfalo/fisiología , Mapeo Encefálico , Humanos , Modelos Neurológicos
6.
Proc Natl Acad Sci U S A ; 110(29): 12090-5, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23821744

RESUMEN

Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of "recovered" waves through a distinct, gap junction-mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Fototransducción/fisiología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/metabolismo , Transmisión Sináptica/fisiología , Animales , Conexina 26 , Conexinas/genética , Fenómenos Electrofisiológicos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Interferencia , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Proteína delta-6 de Union Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...