Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nematol ; 52: 1-15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180382

RESUMEN

In 2012, the first domestic commercial edamame processing plant was established in Arkansas and edamame production was contracted out to local growers. Although the state is a major soybean producer, studies of nematode effects on edamame are limited. A survey of nematode genera and density in 64 contracted edamame production fields was conducted in 2013 and 2014. In both years, Meloidogyne and Heterodera were present in less than half of the surveyed fields while Pratylenchus was the most prevalent in 2013 and Helicotylenchus in 2014. A microplot study was conducted in 2014 in two locations to evaluate the effects of root-knot nematode (Meloidogyne incognita, race 3) and soybean cyst nematode (Heterodera glycines, HG type 2.5.7) on plant growth, yield and food quality components of edamame. Yield was the most consistent factor influenced by nematode pressure with increasing nematode population densities resulting in suppressed pod and seed weight. Additionally, seed protein content was reduced in the highest tested population density of H. glycines. In greenhouse studies, 22 advanced edamame breeding lines from the University of Arkansas soybean breeding program were compared with two susceptible commercial cultivars for suitability as hosts for both M. incognita and H. glycines independently. Four lines showed consistent reductions in M. incognita reproduction relative to the commercial cultivars and could represent sources of moderate resistance for development of future root-knot nematode resistant edamame cultivars.In 2012, the first domestic commercial edamame processing plant was established in Arkansas and edamame production was contracted out to local growers. Although the state is a major soybean producer, studies of nematode effects on edamame are limited. A survey of nematode genera and density in 64 contracted edamame production fields was conducted in 2013 and 2014. In both years, Meloidogyne and Heterodera were present in less than half of the surveyed fields while Pratylenchus was the most prevalent in 2013 and Helicotylenchus in 2014. A microplot study was conducted in 2014 in two locations to evaluate the effects of root-knot nematode (Meloidogyne incognita, race 3) and soybean cyst nematode (Heterodera glycines, HG type 2.5.7) on plant growth, yield and food quality components of edamame. Yield was the most consistent factor influenced by nematode pressure with increasing nematode population densities resulting in suppressed pod and seed weight. Additionally, seed protein content was reduced in the highest tested population density of H. glycines. In greenhouse studies, 22 advanced edamame breeding lines from the University of Arkansas soybean breeding program were compared with two susceptible commercial cultivars for suitability as hosts for both M. incognita and H. glycines independently. Four lines showed consistent reductions in M. incognita reproduction relative to the commercial cultivars and could represent sources of moderate resistance for development of future root-knot nematode resistant edamame cultivars.

2.
J Nematol ; 46(4): 309-20, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25580023

RESUMEN

Variability in edaphic factors such as clay content, organic matter, and nutrient availability within individual fields is a major obstacle confronting cotton producers. Adaptation of geospatial technologies such global positioning systems (GPS), yield monitors, autosteering, and the automated on-and-off technology required for site-specific nematicide application has provided growers with additional tools for managing nematodes. Multiple trials in several states were conducted to evaluate this technology in cotton. In a field infested with Meloidogyne spp., both shallow (0 to 0.3 m) and deep (0 to 0.91 m) apparent electrical conductivity (ECa) readings were highly correlated with sand content. Populations of Meloidogyne spp. were present when shallow and deep EC values were less than 30 and 90 mS/m, respectively. Across three years of trials in production fields in which verification strips (adjacent nematicide treated and untreated rows across all soil zones) were established to evaluate crop response to nematicide application, deep EC values from 27.4-m wide transects of verification strips were more predictive of yield response to application of 1,3-dichloropropene than were shallow EC values in one location and both ECa values equally effective at predicting responses at the second location. In 2006, yields from entire verification strips across three soil zones in four production fields showed that nematicide response was greatest in areas with the lowest EC values indicating highest content of sand. In 2008 in Ashley and Mississippi Counties, AR, nematicide treatment by soil zone resulted in 36% and 42% reductions in the amount of nematicide applied relative to whole-field application. In 2007 in Bamberg County, SC, there was a strong positive correlation between increasing population densities of Meloidogyne incognita and increasing sand content. Trials conducted during 2007 and 2009 in South Carolina against Hoplolaimus columbus showed a stepwise response to increasing rates of aldicarb in zone 1 but not in zones 2 and 3. Site-specific application of nematicides has been shown to be a viable option for producers as a potential management tool against several nematode pathogens of cotton.

3.
Plant Dis ; 98(3): 336-343, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30708433

RESUMEN

Microplots were used to evaluate the impact of soil texture on Meloidogyne incognita, Thielaviopsis basicola, and their interaction on cotton. A native silt loam soil (48% sand) and four different artificial soil textures produced by mixing native soil with sand (53, 70, 74, and 87% sand) were studied. Each soil texture was infested with 0, 4, or 8 M. incognita eggs and 0 or 20 T. basicola chlamydospore chains per gram of soil in a factorial treatment arrangement. Plots were watered when soil moisture fell below -10 joules/kg for the first 21 days and -30 joules/kg from 22 days to harvest. Plant growth was suppressed early in the season and midseason by T. basicola. M. incognita suppressed plant growth and delayed plant development late in the season across all soil textures. Cotton yield was lower in the presence of either T. basicola or M. incognita. An interaction between M. incognita and T. basicola, which decreased plant growth and yield, occurred in 2006 when neither pathogen caused substantial plant damage. Plant growth, development, and yield were lowest in soils with >74% sand. Root colonization by T. basicola and fungal reproduction and survival decreased in soil having 87% sand. M. incognita generally caused more galling and reproduction in soils as sand content increased. Root galling severity and M. incognita reproduction were suppressed by the presence of T. basicola in soil at sand contents lower than 87%. Soil texture had a greater impact on T. basicola than on M. incognita in this study.

4.
Plant Dis ; 96(12): 1805-1817, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30727261

RESUMEN

The importance of fungicide seed treatments on cotton was examined using a series of standardized fungicide trials from 1993 to 2004. Fungicide seed treatments increased stands over those from seed not treated with fungicides in 119 of 211 trials. Metalaxyl increased stands compared to nontreated seed in 40 of 119 trials having significant fungicide responses, demonstrating the importance of Pythium spp. on stand establishment. Similarly, PCNB seed treatment increased stands compared to nontreated seed for 44 of 119 trials with a significant response, indicating the importance of Rhizoctonia solani in stand losses. Benefits from the use of newer seed treatment chemistries, azoxystrobin and triazoles, were demonstrated by comparison with a historic standard seed treatment, carboxin + PCNB + metalaxyl. Little to no stand improvement was found when minimal soil temperatures averaged 25°C the first 3 days after planting. Stand losses due to seedling pathogens increased dramatically as minimal soil temperatures decreased to 12°C and rainfall increased. The importance of Pythium increased dramatically as minimal soil temperature decreased and rainfall increased, while the importance of R. solani was not affected greatly by planting environment. These multi-year data support the widespread use of seed treatment fungicides for the control of the seedling disease complex on cotton.

5.
J Nematol ; 40(3): 161-6, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19440255

RESUMEN

Rotylenchulus reniformis was first detected in a single grid (100 m(2)) in May 2001 in a cotton field in Ashley County, AR, that was being utilized to evaluate the utility of grid-sampling for detection of Meloidogyne incognita. A total of 512 grids were sampled in the 6-ha field in the spring and fall for four years (2001 - 2004), nematode populations were determined for each grid, and nematode population density maps were constructed utilizing Global Positioning Systems and Geographic Information Systems. In May 2001, R. reniformis population density in the single grid where it was detected was 6,364 juveniles and adult reniform nematodes/500 cm(3) soil. By the end of the first year (October 2001), the nematode was found in 17 of the 512 plots with population densities ranging from 682 to 10,909 nematodes/500 cm(3) soil. Over the course of the 4-yr period, reniform nematode incidence increased to 107 of 512 plots, with population density ranging from 227 to 32,727 nematodes/500 cm(3) soil. Reniform nematode spread could be explained by the direction of tillage and water flow in the low end of the field. Highest population densities were observed in the areas of the field with soil types ranging from 54% to 60% silt fraction. In addition to R. reniformis, Meloidogyne incognita was commonly detected in many of the grids, and Tylenchorhynchus spp., Helicotylenchus spp., Paratrichodorus minor and Hoplolaimus magnistylus were detected occasionally.

6.
J Nematol ; 39(1): 1-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19259468

RESUMEN

The effect of various edaphic factors on Meloidogyne incognita population densities and cotton yield were evaluated from 2001 to 2003 in a commercial cotton field in southeastern Arkansas. The 6.07-ha field was subdivided into 512 plots (30.5 m x 3.9 m), and each plot was sampled for M. incognita prior to fumigation (Ppre), at planting (Pi), at peak bloom (Pm) and at harvest (Pf) each year. Soil texture (percent sand fraction) and the pre-plant soil fertility levels each year were determined from each plot. To ensure that a range of nematode population densities was available for study, 1,3-dichloropropene was applied in strips (3.9-m wide) at rates of 14.1, 29.2 and 42.2 liter/ha (128 plots each) each year 2 wk prior to planting. Data were evaluated using both stepwise and multiple regression analyses to determine relationships among edaphic factors, nematode population densities and yield. Although Pi and the percent sand fraction of the soil were the most important factors in explaining the variation in cotton yield, regression models only accounted for <26% of the variation in yield. When the same data were evaluated on a more homogeneous large-scale platform based on similar geographic locations, soil types and nematicide treatments, regression models that included both Pi and sand content explained 65%, 86% and 83% of the variability in yield for 2001, 2002 and 2003, respectively. Prediction profiles of the combined effects also demonstrated that damage potential for M. incognita on cotton in this study varied by soil texture.

7.
J Nematol ; 39(4): 283-94, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19259500

RESUMEN

The importance of plant-parasitic nematodes as yield-limiting pathogens of cotton has received increased recognition and attention in the United States in the recent past. This paper summarizes the remarks made during a symposium of the same title that was held in July 2007 at the joint meeting of the Society of Nematologists and the American Phytopathological Society in San Diego, California. Although several cultural practices, including crop rotation, can be effective in suppressing the populations of the important nematode pathogens of cotton, the economic realities of cotton production limit their use. The use of nematicides is also limited by issues of efficacy and economics. There is a need for development of chemistries that will address these limitations. Also needed are systems that would enable precise nematicide application in terms of rate and placement only in areas where nematode population densities warrant application. Substantial progress is being made in the identification, characterization and mapping of loci for resistance to Meloidogyne incognita and Rotylenchulus reniformis. These data will lead to efficient marker-assisted selection systems that will likely result in development and release of nematode-resistant cotton cultivars with superior yield potential and high fiber quality.

8.
Plant Dis ; 90(4): 519-522, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30786604

RESUMEN

Controlled studies were conducted to evaluate the effects of soil temperatures typical of field conditions during the first 6 weeks of the growing season in Arkansas and different population densities of Meloidogyne incognita on damage to cotton (Gossypium hirsutum) seedlings associated with the interaction between M. incognita and Thielaviopsis basicola. Treatments consisted of varying nocturnal temperatures that approximated the temperatures that occurred during the 2001, 2002, and 2003 growing seasons in southeastern Arkansas. Nocturnal temperatures in the study were as follows: high, the first week at 15°C, followed by 3 weeks at 17°C, 1 week at 21°C, and 1 week at 17°C (approximating the 2002 season); medium, 3 weeks at 15°C and 3 weeks at 19°C (approximating the 2003 season); and low, 1 week at 15°C, 1 week at 13°C, 2 weeks at 17°C, 1 week at 15°C, and 1 week at 17°C (approximating the 2001 season). Pathogen population densities were either 0 or 100 chlamydospores of T. basicola per gram of soil and 0, 2,000, 4,000, or 8,000 eggs of M. incognita per 500 cm3of soil. Plant height and fresh top weight increased with an increase in nocturnal temperature across treatments. There were significant reductions in plant growth and development with T. basicola, but not with M. incognita, at these nocturnal temperatures, but decreased plant height and weight were seen where both pathogens were present in comparison with either pathogen alone. Trends of increased disease associated with T. basicola were observed with increasing inoculum rates of M. incognita, indicating that the interaction between T. basicola and M. incognita occurs even at soil temperatures below the minimum temperature reported as necessary for damage from M. incognita.

9.
J Nematol ; 38(2): 245-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19259454

RESUMEN

The efficacy of abamectin as a seed treatment for control of Meloidogyne incognita on cotton was evaluated in greenhouse, microplot, and field trials in 2002 and 2003. Treatments ranging from 0 to 100 g abamectin/100 kg seed were evaluated. In greenhouse tests 35 d after planting (DAP), plants from seed treated with abamectin were taller than plants from nontreated seed, and root galling severity and nematode reproduction were lower where treated seed were used. The number of second stage juveniles that had entered the roots of plants from seed treated with 100 g abamectin/kg seed was lower during the first 14 DAP than with nontreated seed. In microplots tests, seed treatment with abamectin and soil application of aldicarb at 840 g/kg of soil reduced the number of juveniles penetrating seedling roots during the first 14 DAP compared to the nontreated seedlings. In field plots, population densities of M. incognita were lower 14 DAP in plots that received seed treated with abamectin at 100 g/kg seed than where aldicarb (5.6 kg/ha) was applied at planting. Population densities were comparable for all treatments, including the nontreated controls, at both 21 DAP and harvest. Root galling severity did not differ among treatments at harvest.

10.
J Nematol ; 37(3): 265-71, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19262871

RESUMEN

The possible impact of Rotylenchulus reniformis below plow depth was evaluated by measuring the vertical distribution of R. reniformis and soil texture in 20 symptomatic fields on 17 farms across six states. The mean nematode population density per field, 0 to 122 cm deep, ranged from 0.4 to 63 nematodes/g soil, and in 15 fields more than half of the R. reniformis present were below 30.5 cm, which is the greatest depth usually plowed by farmers or sampled by consultants. In 11 fields measured, root density was greatest in the top 15 cm of soil; however, roots consistently penetrated 92 to 122 cm deep by midseason, and in five fields in Texas and Louisiana the ratio of nematodes to root-length density within soil increased with depth. Repeated sampling during the year in Texas indicated that up to 20% of the nematodes in soil below 60 cm in the fall survived the winter. Differences between Baermann funnel and sugar flotation extraction methods were not important when compared with field-to-field differences in nematode populations and field-specific vertical distribution patterns. The results support the interpretation that R. reniformis below plow depth can significantly impact diagnosis and treatment of cotton fields infested with R. reniformis.

11.
Plant Dis ; 88(4): 345-351, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30812612

RESUMEN

Isolates of Phytophthora sojae were collected during 1995 to 1998 from soil samples collected in 23 Arkansas soybean fields in 14 counties, and characterized by race. A total of seven races (races 2, 10, 14, 15, 24, 26, and 38) were found. Races 10, 24, and 15 were the most common and comprised 47, 22, and 9% of the 32 isolates, respectively. A single isolate each of races 2, 14, 26, and 38 also was found. Three of the isolates collected could not be characterized to race due to inconsistent results. In 1997 and 1998, a portion of a single soybean field at the University of Arkansas Southeast Research and Experiment Center near Rohwer, AR was surveyed intensively for P. sojae. The area was planted each year to the P. sojae-susceptible cv. Williams and both plants and soil were collected to assay for P. sojae from 16 and 28 plots (4.9 by 7.6 m) in 1997 and 1998, respectively. A total of 83 isolates were collected (11 from plants and 72 from soil), and found to represent 13 pathotypes, including 6 with virulence formulae that have not been described previously. Nine commercial soybean cultivars representing a range of reported resistance and tolerance to Phytophthora root and stem rot were screened for resistance to races 10, 15, and 26 of P. sojae using both hypocotyl injection and inoculum layer techniques. Cvs. Manokin, Hartz Variety 5545, and Riverside 499 were consistently resistant to all of the races using both inoculation methods. These results indicate that, although considerable pathogenic variability in P. sojae exists in soybean fields in Arkansas, cultivars with effective resistance are available to help growers manage Phytophthora root and stem rot.

12.
J Nematol ; 34(2): 115-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19265917

RESUMEN

Cotton farmers in Missouri commonly apply a single rate of aldicarb throughout the field at planting to protect their crop from Meloidogyne incognita, even though these nematodes are spatially aggregated. Our purpose was to determine the effect of site-specific application of aldicarb on cotton production in a field infested with these nematodes in 1997 and 1998. Cotton yields were collected from sites not treated with aldicarb (control), sites receiving aldicarb at the standard recommended rate of 0.58 kg a.i./ha, and sites receiving specific aldicarb rates based on the soil population densities of second-stage infective juveniles of root-knot nematode. Yields for the standard rate and site-specific rate treatments were similar and greater (P ≤ 0.05) than the control treatment. Less aldicarb was used for the site-specific than the uniform-rate treatment each year-46% less in 1997 and 61% less in 1998. Costs associated with the site-specific treatment were very high compared with the uniform-rate treatment due to a greater number of soil samples analyzed for nematodes. Site-specific application of aldicarb for root-knot nematode management in cotton may pose fewer environmental risks than the uniform-rate application of aldicarb.

13.
Plant Dis ; 84(4): 449-453, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30841168

RESUMEN

Microplot studies were used to examine the effect of various population densities of Meloidogyne incognita and Thielaviopsis basicola on cotton-plant development and disease severity. Plots were infested with 0, 20, or 100 T. basicola chlamydospores/g and 0, 5, or 10 M. incognita eggs and juveniles/cm3 of soil in a factorial arrangement in 1997 and 1998. Combinations of M. incognita and T. basicola reduced plant survival in both years compared to the noninfested control, except in 1998 for the high rate of T. basicola over all nematode rates. Plant height-to-node ratios were reduced by pathogen combinations compared to the noninfested control or to either pathogen alone. Plant dry weight was reduced by M. incognita in 1998 and the high rate of T. basicola in 1997. Root necrosis was increased by increasing rates of T. basicola in 1997 and by M. incognita over all rates of T. basicola in both years. Colonization of root tissue by T. basicola was increased by the low inoculum density of the nematode at 20 CFU/g soil in 1997 and 100 CFU/g in 1998. Nematode reproduction with the high M. incognita treatment rate was reduced in both years of the study by the high T. basicola rate. This study suggests the importance of population level of each pathogen to the severity of disease and confirms the potential of this disease interaction to impact cotton production.

14.
Phytopathology ; 89(8): 613-7, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18944671

RESUMEN

ABSTRACT Controlled environments were used to study the relationship between the root-knot nematode (Meloidogyne incognita) and Thielaviopsis basicola on cotton. Temperature treatments were continuous 20, 24, and 28 degrees C or two cyclic linear regimes with ranges of 14 to 32 or 18 to 28 degrees C over 24 h. Cotton seeds were planted in fumigated soil infested with T. basicola, M. incognita, or both. After 42 days, pathogen effects on plant growth and pathogen development were evaluated. Histology was conducted on roots collected 14, 28, and 42 days after planting in the continuous 24 degrees C treatment. Reductions in plant height-to-node ratio and total fresh weight were observed for soils infested with both pathogens compared with the control or with soils infested with either pathogen, except for M. incognita-infested soil at 28 degrees C. T. basicola reduced root galling and reproduction of the nematode at all temperatures. Vascular discoloration caused by T. basicola was greater in the presence of M. incognita compared with that by T. basicola alone. At 2 and 4 weeks, histological studies showed that plants grown in all T. basicola-infested soils contained chlamydospore chains on the root surface and in cortical cells. The fungus was not observed inside the vascular cylinder. Roots from 4-week-old plants from soils infested with T. basicola and M. incognita showed fungal sporulation in vascular tissue and localized necrosis of vascular tissue adjacent to the nematodes. At 6 weeks, plants grown in soil infested with T. basicola alone exhibited no remaining cortical tissue and no evidence of vascular colonization by the fungus. Six-week-old plants grown in T. basicola + M. incognita-infested soils exhibited extensive vascular necrosis and sporulation within vascular tissue. These studies suggest that coinfection expands the temperature ranges at which the pathogens are able to cause plant damage. Further, M. incognita greatly increases the access of T. basicola to vascular tissue.

15.
J Nematol ; 30(2): 226-31, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19274214

RESUMEN

The effects of a root-knot nematode-resistant tomato cultivar and application of the nematicide ethoprop on root-knot nematode injury to cucumber were compared in a tomato-cucumber double-cropping system. A root-knot nematode-resistant tomato cultivar, Celebrity, and a susceptible cultivar, Heatwave, were grown in rotation with cucumber in 1995 and 1996. Celebrity suppressed populations of Meloidogyne incognita in the soil and resulted in a low root-gall rating on the subsequent cucumber crop. Nematode population densities were significantly lower at the termination of the cucumber crop in plots following Celebrity than in plots following Heatwave. Premium and marketable yields of cucumbers were higher in plots following Celebrity than in plots following Heatwave. Application of ethoprop through drip irrigation at 4.6 kg a.i./ha reduced root galling on the cucumber crop but had no effect on the nematode population density in the soil at crop termination. Ethoprop did not affect cucumber yield. These results indicate that planting a resistant tomato cultivar in a tomato-cucumber double-cropping system is more effective than applying ethoprop for managing M. incognita.

16.
J Nematol ; 30(4): 415-22, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19274234

RESUMEN

The effects of Meloidogyne incognita and Thielaviopsis basicola on the growth of cotton (Gossypium hirsutum) and the effects of T. basicola on M. incognita populations were evaluated in a 2-year study. Microplots were infested with M. incognita, T. basicola, or a combination of M. incognita and T. basicola. Uninfested plots served as controls both years. Seedling survival was decreased by the M. incognita + T. basicola treatment compared to the control. Meloidogyne incognita alone and M. incognita + T. basicola reduced plant height-to-node ratio for seedlings in both years. Seed cotton yield was reduced, and the length of time required for boll maturation was lengthened by M. incognita + T. basicola in 1994 and M. incognita both alone and with T. basicola in 1995. Position of the first sympodial node on the main stem was increased by M. incognita in both years and was higher for plants treated with M. incognita + T. basicola in 1995 in comparison to the control. The number of sympodial branches with bolls in the first and second fruiting position and the percentage of bolls retained in the second position were reduced both years by M. incognita + T. basicola compared to either the control or T. basicola alone. Orthogonal contrasts indicated that effects on height-to-node ratio, number of days to first cracked boll, and yield were significantly different for combined pathogen inoculations than with either pathogen alone. Meloidogyne incognita eggs at harvest were reduced by T. basicola in 1994 and 1995 compared to M. incognita alone. The study demonstrated a significant interaction between M. incognita and T. basicola on cotton that impacted the survival and development of cotton and the reproduction of M. incognita on cotton.

17.
Plant Dis ; 81(1): 66-70, 1997 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30870950

RESUMEN

Eight cotton cultivars, with and without aldicarb treatment, were evaluated for their effect on the severity of the root-knot nematode-Fusarium wilt disease complex in cotton. A randomized complete block design with a split-plot arrangement of treatments was used with cotton cultivars as the main plots and nematicide treatments as the subplots. Results in 1994 and 1995 were similar. Yield of lint, boll weight, and wilt and root-gall ratings were different among cultivars and between nematicide treatments both years. Increased lint yield and boll weight, and reduced root-gall and wilt ratings were associated with application of aldicarb. Increased lint percentage was associated with application of aldicarb in 1994, but not in 1995. Fiber micronaire, elongation, uniformity, and strength were different among cultivars, but not between nematicide treatments. Fiber length (UHM; Upper-Half Mean) was different among cultivars and was higher in the aldicarb-treated plots in both years. Numbers of Meloidogyne incognita second stage juveniles and eggs extracted from soil samples were lower in the aldicarb-treated plots in July, but not at harvest, both years. Population densities of M. incognita were not different among cultivars, except the mid-season sample in 1995.

18.
J Nematol ; 27(4): 465-71, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19277313

RESUMEN

The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them.

19.
J Nematol ; 23(4): 462-7, 1991 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19283156

RESUMEN

A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings.

20.
J Nematol ; 23(4S): 620-3, 1991 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19283173

RESUMEN

A survey of the nematodes in blackberry (Rubus sp.) rhizospheres was conducted in Arkansas from 1986 to 1989. The state was divided arbitrarily into four quadrants. A total of 134 soil samples was collected, and 150-cm 3 subsamples were assayed for nematodes. Twenty-one species of plant-parasitic nematodes in 11 genera were extracted from the samples. There were differences (P = 0.05) among quadrants of the state in percentage occurrence of the nematodes and in population densities in samples. Xiphinema americanum, Helicotylenchus spp. (H. paraplatyurus, H. platyurus, and H. pseudorobustus), and Pratylenchus spp. (P. vulnus and P. zeae) were found in all quadrants. Xiphinema americanum population density was near 1,000 per 150 cm(3) soil in soil samples from two locations. Other nematodes found in one or more quadrants were Criconemella spp. (C. axeste, C. curvata, C. denoudeni, C. ornata, C. sphaerocephala, and C. xenoplax), Paratrichodorus minor, Tylenchorhynchus claytoni, Hirschmanniella oryzae, Hoplolaimus magnistylus, Scutellonema bradys, and undescribed species of Criconema, Tylenchulus, Xiphinema, and Meloidogyne. Criconemella sphaerocephala and Helicotylenchus platyurus are reported from Arkansas for the first time. Helicotylenchus paraplatyurus is reported from the United States for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...