Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nematol ; 46(1): 12-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24643451

RESUMEN

Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

2.
Phytopathology ; 104(5): 507-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24283540

RESUMEN

Effects of the root-knot nematode Meloidogyne incognita and the fungal pathogen Thielaviopsis basicola on cotton seedling growth and root morphology were evaluated in controlled environmental experiments. Four pathogen treatments, including noninfested soil, soil infested with M. incognita, soil infested with T. basicola, and soil infested with both pathogens were evaluated at soil bulk densities (BDs) of 1.25 and 1.50 g/cm(3). Plant growth and the morphology of the root systems were evaluated 44 days after planting. Infestation with M. incognita and T. basicola together significantly reduced seedling emergence, number of stem nodes, and root system volume compared with either pathogen alone. Either M. incognita or T. basicola reduced plant height, root fresh weight, top dry weight; root parameters total root length, surface area, and links; and root topological parameters magnitude, altitude, and exterior path length. M. incognita infection increased root radius. Root colonization by T. basicola increased with the presence of M. incognita at the lower soil BD. In contrast to previous research with Pythium spp., root topological indices (TIs) were similar with all of the treatments. Root TIs were near 1.92, indicating a herringbone (less branching) root architectural structure. Studying root architecture using a topological model offers an additional approach to evaluating fungi and nematodes and their interactions for soilborne-pathogen systems.


Asunto(s)
Ascomicetos/fisiología , Gossypium , Enfermedades de las Plantas , Tylenchoidea/fisiología , Animales , Gossypium/crecimiento & desarrollo , Gossypium/microbiología , Gossypium/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Plantones/parasitología , Suelo
3.
J Nematol ; 45(2): 112-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23833326

RESUMEN

The effects of a soil hardpan and Meloidogyne incognita on cotton root architecture and plant growth were evaluated in microplots in 2010 and 2011. Soil was infested with M. incognita at four different levels with or without a hardpan. The presence of a hardpan resulted in increased plant height, number of main stem nodes, and root fresh weight for cotton seedlings both years. Meloidogyne incognita decreased height and number of nodes for seedlings in 2010. Nematode infestation increased seedling root length and enhanced root magnitude, altitude, and exterior path length in 2010. This was also the case for root length and magnitude in 2011 at lower infestation levels suggesting compensatory growth. A hardpan had no consistent effect on these root parameters but increased root volume in both years. A hardpan hastened crop maturity and increased the number of fruiting branches that were produced, while M. incognita infection delayed crop development and reduced plant height and number of bolls. Both M. incognita infection and a hardpan reduced taproot length and root dry weight below the hardpan in both years. Root topological indices under all the treatments ranged from 1.71 to 1.83 both years indicating that root branching followed a herringbone pattern. The techniques for characterizing root architecture that were used in this study provide a greater understanding of changes that result from disease and soil abiotic parameters affecting root function and crop productivity.

4.
Plant Dis ; 93(4): 354-362, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30764216

RESUMEN

The efficacy of triazole and host resistance-inducing seed treatment chemicals was examined for black root rot on cotton caused by Thielaviopsis basicola in both artificially and naturally infested soils with and without nematodes. In naturally infested soil, myclobutanil was effective in reducing root and hypocotyl discoloration over a wide range of soil population densities. Treatments containing high rates (42 g a.i./100 kg seed) of myclobutanil provided greater reductions in disease than low rates (21 g a.i./100 kg seed) in some experiments. Acibenzolar-S-methyl applied to the seed reduced black root rot or colonization by T. basicola on seedlings in artificially infested soils. Rates of acibenzolar-S-methyl did not differ in efficacy. In controlled studies, root colonization by T. basicola was significantly lower when seeds were treated with both myclobutanil and acibenzolar-S-methyl than with either chemical alone. In naturally infested soil under low (24 CFU/g soil) and high (154 CFU/g soil) populations of T. basicola, a combination of myclobutanil and acibenzolar-S-methyl at the high rate resulted in the lowest root discoloration and colonization. The nematicide seed treatment abamectin improved the control of black root rot in the presence of Meloidogyne incognita. The semi-selective medium TB-CEN allowed the importance of T. basicola to be evaluated in the presence of other pathogens that contribute to the seedling disease complex on cotton by quantifying the isolation frequency and percent colonization of T. basicola.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...