Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Robot AI ; 10: 1207052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901167

RESUMEN

Introduction: Wearable I robots such as exoskeletons combine the strength and precision of intelligent machines with the adaptability and creativity of human beings. Exoskeletons are unique in that humans interact with the technologies on both a physical and cognitive level, and as such, involve a complex, interdependent relationship between humans and robots. The aim of this paper was to explore the concepts of agency and adaptation as they relate to human-machine synchrony, as human users learned to operate a complex whole-body powered exoskeleton. Methods: Qualitative interviews were conducted with participants over multiple sessions in which they performed a range of basic functional tasks and simulated industrial tasks using a powered exoskeleton prototype, to understand their expectations of the human-technology partnership, any challenges that arose in their interaction with the device, and what strategies they used to resolve such challenges. Results: Analysis of the data revealed two overarching themes: 1) Participants faced physical, cognitive, and affective challenges to synchronizing with the exoskeleton; and 2) they engaged in sensemaking strategies such as drawing analogies with known prior experiences and anthropomorphized the exoskeleton as a partner entity in order to adapt and address challenges. Discussion: This research is an important first step to understanding how humans make sense of and adapt to a powerful and complex wearable robot with which they must synchronize in order to perform tasks. Implications for our understanding of human and machine agency as well as bidirectional coadaptation principles are discussed.

2.
Front Psychol ; 12: 624108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679541

RESUMEN

Wearable robots are an emerging form of technology that allow organizations to combine the strength, precision, and performance of machines with the flexibility, intelligence, and problem-solving abilities of human wearers. Active exoskeletons are a type of wearable robot that gives wearers the ability to effortlessly lift up to 200 lbs., as well as perform other types of physically demanding tasks that would be too strenuous for most humans. Synchronization between exoskeleton suits and wearers is one of the most challenging requirements to operate these technologies effectively. In this conceptual paper, we extend interpersonal adaption theory (IAT) to the exoskeleton context and explicate (a) the antecedents that are most likely to shape synchrony in human-exoskeleton interactions, (b) automatic and strategic synchrony as adaptive behaviors in human-exoskeleton interactions, and (c) outcome variables that are especially important in these processes. Lastly, we offer a discussion of key methodological challenges for measuring synchrony in human-exoskeleton interactions and offer a future research agenda for this important area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...