Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Magn Reson Imaging Clin N Am ; 32(3): 385-394, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944429

RESUMEN

Medical imaging, particularly fetal MR imaging, has undergone a transformative shift with the introduction of 3 Tesla (3T) clinical MR imaging systems. The utilization of higher static magnetic fields in these systems has resulted in remarkable advancements, including superior soft tissue contrast, improved spatial and temporal resolution, and reduced image acquisition time. Despite these notable benefits, safety concerns have emerged, stemming from the elevated static magnetic field strength, amplified acoustic noise, and increased radiofrequency power deposition. This article provides an overview of fetal MR imaging at 3T, its benefits and drawbacks, and the potential safety issues.


Asunto(s)
Imagen por Resonancia Magnética , Seguridad del Paciente , Diagnóstico Prenatal , Humanos , Imagen por Resonancia Magnética/métodos , Embarazo , Diagnóstico Prenatal/métodos , Femenino , Enfermedades Fetales/diagnóstico por imagen
2.
Ann Neurol ; 96(2): 321-331, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38738750

RESUMEN

OBJECTIVE: For stroke patients with unknown time of onset, mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) can guide thrombolytic intervention. However, access to MRI for hyperacute stroke is limited. Here, we sought to evaluate whether a portable, low-field (LF)-MRI scanner can identify DWI-FLAIR mismatch in acute ischemic stroke. METHODS: Eligible patients with a diagnosis of acute ischemic stroke underwent LF-MRI acquisition on a 0.064-T scanner within 24 h of last known well. Qualitative and quantitative metrics were evaluated. Two trained assessors determined the visibility of stroke lesions on LF-FLAIR. An image coregistration pipeline was developed, and the LF-FLAIR signal intensity ratio (SIR) was derived. RESULTS: The study included 71 patients aged 71 ± 14 years and a National Institutes of Health Stroke Scale of 6 (interquartile range 3-14). The interobserver agreement for identifying visible FLAIR hyperintensities was high (κ = 0.85, 95% CI 0.70-0.99). Visual DWI-FLAIR mismatch had a 60% sensitivity and 82% specificity for stroke patients <4.5 h, with a negative predictive value of 93%. LF-FLAIR SIR had a mean value of 1.18 ± 0.18 <4.5 h, 1.24 ± 0.39 4.5-6 h, and 1.40 ± 0.23 >6 h of stroke onset. The optimal cut-point for LF-FLAIR SIR was 1.15, with 85% sensitivity and 70% specificity. A cut-point of 6.6 h was established for a FLAIR SIR <1.15, with an 89% sensitivity and 62% specificity. INTERPRETATION: A 0.064-T portable LF-MRI can identify DWI-FLAIR mismatch among patients with acute ischemic stroke. Future research is needed to prospectively validate thresholds and evaluate a role of LF-MRI in guiding thrombolysis among stroke patients with uncertain time of onset. ANN NEUROL 2024;96:321-331.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Accidente Cerebrovascular Isquémico , Humanos , Anciano , Masculino , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
3.
Magn Reson Med ; 91(2): 541-557, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37753621

RESUMEN

PURPOSE: To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS: A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS: Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION: Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen Eco-Planar/métodos
4.
Cereb Cortex ; 33(24): 11517-11525, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37851854

RESUMEN

Speech and language processing involve complex interactions between cortical areas necessary for articulatory movements and auditory perception and a range of areas through which these are connected and interact. Despite their fundamental importance, the precise mechanisms underlying these processes are not fully elucidated. We measured BOLD signals from normal hearing participants using high-field 7 Tesla fMRI with 1-mm isotropic voxel resolution. The subjects performed 2 speech perception tasks (discrimination and classification) and a speech production task during the scan. By employing univariate and multivariate pattern analyses, we identified the neural signatures associated with speech production and perception. The left precentral, premotor, and inferior frontal cortex regions showed significant activations that correlated with phoneme category variability during perceptual discrimination tasks. In addition, the perceived sound categories could be decoded from signals in a region of interest defined based on activation related to production task. The results support the hypothesis that articulatory motor networks in the left hemisphere, typically associated with speech production, may also play a critical role in the perceptual categorization of syllables. The study provides valuable insights into the intricate neural mechanisms that underlie speech processing.


Asunto(s)
Percepción del Habla , Habla , Humanos , Habla/fisiología , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Percepción Auditiva/fisiología , Percepción del Habla/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37621555

RESUMEN

In the course of diffusion, water molecules experience varying values for the relaxation-time property of the underlying tissue, a factor that has not been accounted for in diffusion MRI (dMRI) modeling. Accordingly, we derive a relationship between the diffusion profile measured by dMRI and the spatial gradient of the image, and subsequently estimate the latter from the former. We test our hypothesized relationship via dMRI of the human brain (a public in vivo image and an acquired ex vivo stimulated-echo image), showing statistically significant results that may be due to our model and/or the confounding factor of "fiber continuity".

6.
Cureus ; 15(7): e42123, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37602005

RESUMEN

Cogan's syndrome (CS) is a rare disorder of an unknown origin characterized by inflammatory eye disease and vestibuloauditory symptoms, primarily affecting young white adults, without a hereditary pattern. The exclusion of other diseases makes diagnosis difficult, and it is likely underreported in the literature. A 74-year-old previously healthy African American male presented with ear and jaw pain, later accompanied by vestibular symptoms, fever of unknown origin, aortitis, and a third-degree heart block. The workup revealed incidental renal cell carcinoma and interstitial keratitis. This case highlights the challenge of diagnosing an atypical presentation of CS with late-onset interstitial keratitis by excluding other complex syndromes.

7.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461673

RESUMEN

BACKGROUND: The association between brain regions involved in speech production and those that play a role in speech perception is not yet fully understood. We compared speech production related brain activity with activations resulting from perceptual categorization of syllables using high field 7 Tesla functional magnetic resonance imaging (fMRI) at 1-mm isotropic voxel resolution, enabling high localization accuracy compared to previous studies. METHODS: Blood oxygenation level dependent (BOLD) signals were obtained in 20 normal hearing subjects using a simultaneous multi-slice (SMS) 7T echo-planar imaging (EPI) acquisition with whole-head coverage and 1 mm isotropic resolution. In a speech production localizer task, subjects were asked to produce a silent lip-round vowel /u/ in response to the visual cue "U" or purse their lips when they saw the cue "P". In a phoneme discrimination task, subjects were presented with pairs of syllables, which were equiprobably identical or different along an 8-step continuum between the prototypic /ba/ and /da/ sounds. After the presentation of each stimulus pair, the subjects were asked to indicate whether the two syllables they heard were identical or different by pressing one of two buttons. In a phoneme classification task, the subjects heard only one syllable and asked to indicate whether it was /ba/ or /da/. RESULTS: Univariate fMRI analyses using a parametric modulation approach suggested that left motor, premotor, and frontal cortex BOLD activations correlate with phoneme category variability in the /ba/-/da/ discrimination task. In contrast, the variability related to acoustic features of the phonemes were the highest in the right primary auditory cortex. Our multivariate pattern analysis (MVPA) suggested that left precentral/inferior frontal cortex areas, which were associated with speech production according to the localizer task, play a role also in perceptual categorization of the syllables. CONCLUSIONS: The results support the hypothesis that articulatory motor networks in the left hemisphere that are activated during speech production could also have a role in perceptual categorization of syllables. Importantly, high voxel-resolution combined with advanced coil technology allowed us to pinpoint the exact brain regions involved in both perception and production tasks.

8.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824894

RESUMEN

Purpose: To demonstrate the advantages of spatiotemporal magnetic field monitoring to correct eddy current-induced artifacts (ghosting and geometric distortions) in high gradient strength diffusion MRI (dMRI). Methods: A dynamic field camera with 16 NMR field probes was used to characterize eddy current fields induced from diffusion gradients for different gradients strengths (up to 300 mT/m), diffusion directions, and shots in a 3D multi-shot EPI sequence on a 3T Connectom scanner. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-resolution whole brain ex vivo dMRI. A 3D multi-shot image reconstruction framework was informed with the actual nonlinear phase evolution measured with the dynamic field camera, thereby accounting for high-order eddy currents fields on top of the image encoding gradients in the image formation model. Results: Eddy current fields from diffusion gradients at high gradient strength in a 3T Connectom scanner are highly nonlinear in space and time, inducing high-order spatial phase modulations between odd/even echoes and shots that are not static during the readout. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting approaches such as navigator- and structured low-rank-based methods or MUSE, followed by image-based distortion correction with eddy. Improved dMRI analysis is demonstrated with diffusion tensor imaging and high-angular resolution diffusion imaging. Conclusion: Strong eddy current artifacts characteristic of high gradient strength dMRI can be well corrected with dynamic field monitoring-based image reconstruction, unlike the two-step approach consisting of ghosting correction followed by geometric distortion reduction with eddy.

9.
Acad Radiol ; 30(2): 341-348, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34635436

RESUMEN

INTRODUCTION: Clinical validation studies have demonstrated the ability of accelerated MRI sequences to decrease acquisition time and motion artifact while preserving image quality. The operational benefits, however, have been less explored. Here, we report our initial clinical experience in implementing fast MRI techniques for outpatient brain imaging during the COVID-19 pandemic. METHODS: Aggregate acquisition times were extracted from the medical record on consecutive imaging examinations performed during matched pre-implementation (7/1/2019-12/31/2019) and post-implementation periods (7/1/2020-12/31/2020). Expected acquisition time reduction for each MRI protocol was calculated through manual collection of acquisition times for the conventional and accelerated sequences performed during the pre- and post-implementation periods. Aggregate and expected acquisition times were compared for the five most frequently performed brain MRI protocols: brain without contrast (BR-), brain with and without contrast (BR+), multiple sclerosis (MS), memory loss (MML), and epilepsy (EPL). RESULTS: The expected time reductions for BR-, BR+, MS, MML, and EPL protocols were 6.6 min, 11.9 min, 14 min, 10.8 min, and 14.1 min, respectively. The overall median aggregate acquisition time was 31 [25, 36] min for the pre-implementation period and 18 [15, 22] min for the post-implementation period, with a difference of 13 min (42%). The median acquisition time was reduced by 4 min (25%) for BR-, 14.0 min (44%) for BR+, 14 min (38%) for MS, 11 min (52%) for MML, and 16 min (35%) for EPL. CONCLUSION: The implementation of fast brain MRI sequences significantly reduced the acquisition times for the most commonly performed outpatient brain MRI protocols.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Humanos , Pacientes Ambulatorios , Pandemias , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen
10.
Eur Radiol ; 33(4): 2905-2915, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36460923

RESUMEN

OBJECTIVES: High-resolution post-contrast T1-weighted imaging is a workhorse sequence in the evaluation of neurological disorders. The T1-MPRAGE sequence has been widely adopted for the visualization of enhancing pathology in the brain. However, this three-dimensional (3D) acquisition is lengthy and prone to motion artifact, which often compromises diagnostic quality. The goal of this study was to compare a highly accelerated wave-controlled aliasing in parallel imaging (CAIPI) post-contrast 3D T1-MPRAGE sequence (Wave-T1-MPRAGE) with the standard 3D T1-MPRAGE sequence for visualizing enhancing lesions in brain imaging at 3 T. METHODS: This study included 80 patients undergoing contrast-enhanced brain MRI. The participants were scanned with a standard post-contrast T1-MPRAGE sequence (acceleration factor [R] = 2 using GRAPPA parallel imaging technique, acquisition time [TA] = 5 min 18 s) and a prototype post-contrast Wave-T1-MPRAGE sequence (R = 4, TA = 2 min 32 s). Two neuroradiologists performed a head-to-head evaluation of both sequences and rated the visualization of enhancement, sharpness, noise, motion artifacts, and overall diagnostic quality. A 15% noninferiority margin was used to test whether post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE. Inter-rater and intra-rater agreement were calculated. Quantitative assessment of CNR/SNR was performed. RESULTS: Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE for delineating enhancing lesions with unanimous agreement in all cases between raters. Wave-T1-MPRAGE was noninferior in the perception of noise (p < 0.001), motion artifact (p < 0.001), and overall diagnostic quality (p < 0.001). CONCLUSION: High-accelerated post-contrast Wave-T1-MPRAGE enabled a two-fold reduction in acquisition time compared to the standard sequence with comparable performance for visualization of enhancing pathology and equivalent perception of noise, motion artifacts and overall diagnostic quality without loss of clinically important information. KEY POINTS: • Post-contrast wave-controlled aliasing in parallel imaging (CAIPI) T1-MPRAGE accelerated the acquisition of three-dimensional (3D) high-resolution post-contrast images by more than two-fold. • Post-contrast Wave-T1-MPRAGE was noninferior to standard T1-MPRAGE with unanimous agreement between reviewers (100% in 80 cases) for the visualization of intracranial enhancing lesions. • Wave-T1-MPRAGE was equivalent to the standard sequence in the perception of noise in 94% (75 of 80) of cases and was preferred in 16% (13 of 80) of cases for decreased motion artifact.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Artefactos , Movimiento (Física)
11.
Brain Commun ; 4(6): fcac280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382222

RESUMEN

Resting-state functional MRI is being used to develop diagnostic, prognostic and therapeutic biomarkers for critically ill patients with severe brain injuries. In studies of healthy volunteers and non-critically ill patients, prospective cardiorespiratory data are routinely collected to remove non-neuronal fluctuations in the resting-state functional MRI signal during analysis. However, the feasibility and utility of collecting cardiorespiratory data in critically ill patients on a clinical MRI scanner are unknown. We concurrently acquired resting-state functional MRI (repetition time = 1250 ms) and cardiac and respiratory data in 23 critically ill patients with acute severe traumatic brain injury and in 12 healthy control subjects. We compared the functional connectivity results from two approaches that are commonly used to correct cardiorespiratory noise: (i) denoising with cardiorespiratory data (i.e. image-based method for retrospective correction of physiological motion effects in functional MRI) and (ii) standard bandpass filtering. Resting-state functional MRI data in 7 patients could not be analysed due to imaging artefacts. In 6 of the remaining 16 patients (37.5%), cardiorespiratory data were either incomplete or corrupted. In patients (n = 10) and control subjects (n = 10), the functional connectivity results corrected with the image-based method for retrospective correction of physiological motion effects in functional MRI did not significantly differ from those corrected with bandpass filtering of 0.008-0.125 Hz. Collectively, these findings suggest that, in critically ill patients with severe traumatic brain injury, there is limited feasibility and utility to denoising the resting-state functional MRI signal with prospectively acquired cardiorespiratory data.

12.
Neuroimage Clin ; 36: 103199, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137496

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a deadly neurodegenerative disorder affecting motor neurons in the spinal cord and brain. Studies have reported on atrophy within segments of the cervical cord, but we are not aware of previous investigations of the whole spinal cord. Herein we present our findings from a 3T MRI study involving 32 subjects (15 ALS participants and 17 healthy controls) characterizing cross-sectional area along the entire cord. We report atrophy of the cervical enlargement in ALS participants, but no evidence of atrophy of the thoracolumbar enlargement. These results suggest that MR-based analyses of the cervical cord may be sufficient for in vivo investigations of spinal cord atrophy in ALS, and that atrophy of the cervical enlargement (C4-C7) is a potential imaging marker for quantifying lower motor neuron degradation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Médula Cervical , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Atrofia/diagnóstico por imagen , Atrofia/patología , Neuronas Motoras/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología
13.
Eur Radiol ; 32(10): 7128-7135, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35925387

RESUMEN

OBJECTIVES: Wave-CAIPI (Controlled Aliasing in Parallel Imaging) enables dramatic reduction in acquisition time of 3D MRI sequences such as 3D susceptibility-weighted imaging (SWI) but has not been clinically evaluated at 1.5 T. We sought to compare highly accelerated Wave-CAIPI SWI (Wave-SWI) with two alternative standard sequences, conventional three-dimensional SWI and two-dimensional T2*-weighted Gradient-Echo (T2*w-GRE), in patients undergoing routine brain MRI at 1.5 T. METHODS: In this study, 172 patients undergoing 1.5 T brain MRI were scanned with a more commonly used susceptibility sequence (standard SWI or T2*w-GRE) and a highly accelerated Wave-SWI sequence. Two radiologists blinded to the acquisition technique scored each sequence for visualization of pathology, motion and signal dropout artifacts, image noise, visualization of normal anatomy (vessels and basal ganglia mineralization), and overall diagnostic quality. Superiority testing was performed to compare Wave-SWI to T2*w-GRE, and non-inferiority testing with 15% margin was performed to compare Wave-SWI to standard SWI. RESULTS: Wave-SWI performed superior in terms of visualization of pathology, signal dropout artifacts, visualization of normal anatomy, and overall image quality when compared to T2*w-GRE (all p < 0.001). Wave-SWI was non-inferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall image quality (all p < 0.001). Wave-SWI was superior to standard SWI for motion artifact (p < 0.001), while both conventional susceptibility sequences were superior to Wave-SWI for image noise (p < 0.001). CONCLUSIONS: Wave-SWI can be performed in a 1.5 T clinical setting with robust performance and preservation of diagnostic quality. KEY POINTS: • Wave-SWI accelerated the acquisition of 3D high-resolution susceptibility images in 70% of the acquisition time of the conventional T2*GRE. • Wave-SWI performed superior to T2*w-GRE for visualization of pathology, signal dropout artifacts, and overall diagnostic image quality. • Wave-SWI was noninferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall diagnostic image quality.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
14.
J Med Entomol ; 59(5): 1687-1693, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35794805

RESUMEN

Entomopathogenic fungi allow chemical-free and environmentally safe vector management. Beauveria bassiana (Balsamo-Crivelli) Vuillemin is a promising biological control agent and an important component of integrated vector management. We investigated the mortality of Aedes albopictus (Skuse) larvae exposed to five concentrations of B. bassiana using Mycotrol ESO and adult oviposition behavior to analyze the egg-laying preferences of wild Ae. albopictus in response to different fungal concentrations. We examined the mortality of mid-instars exposed to B. bassiana concentrations of 1 × 104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108 conidia/ml every 24 h for 12 d. In the oviposition behavior study, the fungus was applied to wooden paddles at 1 × 105, 1 × 107, and 1 × 109 conidia/ml, and the paddles were individually placed into quad-ovitraps. Both experiments contained control groups without B. bassiana. Kaplan-Meier survival analysis revealed that larval mortality was concentration dependent. The median lethal concentration was 2.43 × 105 conidia/ml on d 12. The median lethal time was 3.68 d at 1 × 106 conidia/ml. Oviposition monitoring revealed no significant difference in egg count between the control and treatment paddles. We observed an inverse relationship between the concentration of B. bassiana and the percentage of paddles with eggs. We concluded that concentrations above 1 × 106 conidia/ml are larvicidal, and Ae. albopictus laid similar numbers of eggs on fungus-impregnated and control wooden substrates; however, they were more likely to oviposit on substrates without B. bassiana. With these findings, we suggest that B. bassiana-infused ovitraps can be used for mosquito population monitoring while also delivering mycopesticides to adult mosquitoes.


Asunto(s)
Aedes , Beauveria , Hypocreales , Aedes/fisiología , Animales , Beauveria/fisiología , Femenino , Larva/microbiología , Mosquitos Vectores , Oviposición , Control Biológico de Vectores , Esporas Fúngicas
15.
Environ Entomol ; 51(3): 586-594, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35552675

RESUMEN

The Asian tiger mosquito, Aedes albopictus (Skuse), is a public health threat because it can potentially transmit multiple pathogenic arboviruses, exhibits aggressive diurnal biting, and is highly invasive. As Ae. albopictus moved northward into the United States, the limits of expansion were predicted as locations with a mean January temperature warmer than -2.5°C. We postulated that the range of Ae. albopictus could exceed these temperature limits if eggs in diapause overwinter in tires that provide an insulating effect from extreme temperatures. Fifteen tires with Ae. albopictus and Aedes triseriatus (Say) eggs, a native cold hardy species, were placed outside at five locations along a latitudinal gradient in Wisconsin and Illinois during the winter of 2018-2019; notably, in January 2019, a regional arctic air event brought the lowest temperatures recorded in over 20 yr. External and internal tire temperatures were recorded at 3 hr intervals, and egg survival was recorded after six months. Aedes albopictus eggs survived only from tires at northernmost locations. The mean internal January temperature of tires that supported survival was -1.8°C, while externally the mean temperature was -5.3°C, indicating that tires provided an average of +3.5°C of insulation. Tires that supported egg survival also had over 100 mm of snow cover during January. In the absence of snow cover, tires across the study area provided an average +0.79°C [95% CI 0.34-1.11] insulation. This work provides strong argument for the inclusion of microhabitats in models of dispersal and establishment of Ae. albopictus and other vector species.


Asunto(s)
Aedes , Animales , Frío , Mosquitos Vectores , Estaciones del Año , Nieve , Estados Unidos
16.
Pediatr Radiol ; 52(6): 1115-1124, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35119490

RESUMEN

BACKGROUND: Susceptibility-weighted imaging (SWI) is highly sensitive for intracranial hemorrhagic and mineralized lesions but is associated with long scan times. Wave controlled aliasing in parallel imaging (Wave-CAIPI) enables greater acceleration factors and might facilitate broader application of SWI, especially in motion-prone populations. OBJECTIVE: To compare highly accelerated Wave-CAIPI SWI to standard SWI in the non-sedated pediatric outpatient setting, with respect to the following variables: estimated scan time, image noise, artifacts, visualization of normal anatomy and visualization of pathology. MATERIALS AND METHODS: Twenty-eight children (11 girls, 17 boys; mean age ± standard deviation [SD] = 128.3±62 months) underwent 3-tesla (T) brain MRI, including standard three-dimensional (3-D) SWI sequence followed by a highly accelerated Wave-CAIPI SWI sequence for each subject. We rated all studies using a predefined 5-point scale and used the Wilcoxon signed rank test to assess the difference for each variable between sequences. RESULTS: Wave-CAIPI SWI provided a 78% and 67% reduction in estimated scan time using the 32- and 20-channel coils, respectively, corresponding to estimated scan time reductions of 3.5 min and 3 min, respectively. All 28 children were imaged without anesthesia. Inter-reader agreement ranged from fair to substantial (k=0.67 for evaluation of pathology, 0.55 for anatomical contrast, 0.3 for central noise, and 0.71 for artifacts). Image noise was rated higher in the central brain with wave SWI (P<0.01), but not in the peripheral brain. There was no significant difference in the visualization of normal anatomical structures and visualization of pathology between the standard and wave SWI sequences (P=0.77 and P=0.79, respectively). CONCLUSION: Highly accelerated Wave-CAIPI SWI of the brain can provide similar image quality to standard SWI, with estimated scan time reduction of 3-3.5 min depending on the radiofrequency coil used, with fewer motion artifacts, at a cost of mild but perceptibly increased noise in the central brain.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Niño , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Masculino , Neuroimagen/métodos , Proyectos Piloto
17.
PLoS One ; 16(9): e0257077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34492090

RESUMEN

Ultra-high field MRI at 7 T can produce much better visualization of sub-cortical structures compared to lower field, which can greatly help target verification as well as overall treatment monitoring for patients with deep brain stimulation (DBS) implants. However, use of 7 T MRI for such patients is currently contra-indicated by guidelines from the device manufacturers due to the safety issues. The aim of this study was to provide an assessment of safety and image quality of ultra-high field magnetic resonance imaging at 7 T in patients with deep brain stimulation implants. We performed experiments with both lead-only and complete DBS systems implanted in anthropomorphic phantoms. RF heating was measured for 43 unique patient-derived device configurations. Magnetic force measurements were performed according to ASTM F2052 test method, and device integrity was assessed before and after experiments. Finally, we assessed electrode artifact in a cadaveric brain implanted with an isolated DBS lead. RF heating remained below 2°C, similar to a fever, with the 95% confidence interval between 0.38°C-0.52°C. Magnetic forces were well below forces imposed by gravity, and thus not a source of concern. No device malfunctioning was observed due to interference from MRI fields. Electrode artifact was most noticeable on MPRAGE and T2*GRE sequences, while it was minimized on T2-TSE images. Our work provides the safety assessment of ultra-high field MRI at 7 T in patients with DBS implants. Our results suggest that 7 T MRI may be performed safely in patients with DBS implants for specific implant models and MRI hardware.


Asunto(s)
Estimulación Encefálica Profunda , Aumento de la Imagen , Imagen por Resonancia Magnética , Artefactos , Humanos , Fantasmas de Imagen , Ondas de Radio , Temperatura
18.
Neuroimage ; 243: 118530, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34464739

RESUMEN

The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.


Asunto(s)
Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Neuroimagen/métodos , Fantasmas de Imagen
19.
Pediatr Radiol ; 51(11): 2009-2017, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34268599

RESUMEN

BACKGROUND: Fast magnetic resonance imaging (MRI) sequences are advantageous in pediatric imaging as they can lessen child discomfort, decrease motion artifact and improve scanner availability. OBJECTIVE: To evaluate the feasibility of an ultrafast wave-CAIPI (controlled aliasing in parallel imaging) MP-RAGE (magnetization-prepared rapid gradient echo) sequence for brain imaging of awake pediatric patients. MATERIALS AND METHODS: Each MRI included a standard MP-RAGE sequence and an ultrafast wave-MP-RAGE sequence. Two neuroradiologists evaluated both sequences in terms of artifacts, noise, anatomical contrast and pathological contrast. A predefined 5-point scale was used by two independent pediatric neuroradiologists. A Wilcoxon signed-rank test was used to evaluate the difference between sequences for each variable. RESULTS: Twenty-four patients (14 males; mean age: 11.5±4.5 years, range: 1 month to 17.8 years) were included. Wave-CAIPI MP-RAGE provided a 77% reduction in scan time using a 32-channel coil and a 70% reduction using a 20-channel coil. Visualization of the pathology, artifacts and pathological enhancement (including parenchymal, leptomeningeal and dural enhancement) was not significantly different between standard MP-RAGE and wave-CAIPI MP-RAGE (all P>0.05). For central (P<0.001) and peripheral (P<0.001) noise, and the evaluation of the anatomical structures (P<0.001), the observers favored standard MP-RAGE over wave-CAIPI MP-RAGE. CONCLUSION: Ultrafast brain imaging with wave-CAIPI MP-RAGE is feasible in awake pediatric patients, providing a substantial reduction in scan time at a cost of subjectively increased image noise.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Adolescente , Artefactos , Encéfalo/diagnóstico por imagen , Niño , Humanos , Masculino
20.
J Neuroimaging ; 31(5): 893-901, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34081374

RESUMEN

BACKGROUND AND PURPOSE: High-resolution three-dimensional (3D) post-contrast imaging of the brain is essential for comprehensive evaluation of inflammatory, neoplastic, and neurovascular diseases of the brain. 3D T1-weighted spin-echo-based sequences offer increased sensitivity for the detection of enhancing lesions but are relatively prolonged examinations. We evaluated whether a highly accelerated Wave-controlled aliasing in parallel imaging (Wave-CAIPI) post-contrast 3D T1-sampling perfection with application-optimized contrasts using different flip angle evolutions (T1-SPACE) sequence (Wave-T1-SPACE) was noninferior to the standard high-resolution 3D T1-SPACE sequence for visualizing enhancing lesions with comparable diagnostic quality. METHODS: One hundred and three consecutive patients were prospectively evaluated with a standard post-contrast 3D T1-SPACE sequence (acquisition time [TA] = 4 min 19 s) and an optimized Wave-CAIPI 3D T1-SPACE sequence (TA = 1 min 40 s) that was nearly three times faster than the standard sequence. Two blinded neuroradiologists performed a head-to-head comparison to evaluate the visualization of enhancing pathology, perception of artifacts, and overall diagnostic quality. A 15% margin was used to test whether post-contrast Wave-T1-SPACE was noninferior to standard T1-SPACE. RESULTS: Wave-T1-SPACE was noninferior to standard T1-SPACE for delineating parenchymal and meningeal enhancing pathology (p < 0.01). Wave-T1-SPACE showed marginally higher background noise compared to the standard sequence and was noninferior in the overall diagnostic quality (p = 0.03). CONCLUSIONS: Our findings show that Wave-T1-SPACE was noninferior to standard T1-SPACE for visualization of enhancing pathology and overall diagnostic quality with a three-fold reduction in acquisition time compared to the standard sequence. Wave-T1-SPACE may be used to accelerate 3D post-contrast T1-weighted spin-echo imaging without loss of clinically important information.


Asunto(s)
Gadolinio , Imagenología Tridimensional , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...