Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014103

RESUMEN

Although infectious disease dynamics are often analyzed at the macro-scale, increasing numbers of drug-resistant infections highlight the importance of within-host modeling that simultaneously solves across multiple scales to effectively respond to epidemics. We review multiscale modeling approaches for complex, interconnected biological systems and discuss critical steps involved in building, analyzing, and applying such models within the discipline of model credibility. We also present our two tools: CaliPro, for calibrating multiscale models (MSMs) to datasets, and tunable resolution, for fine- and coarse-graining sub-models while retaining insights. We include as an example our work simulating infection with Mycobacterium tuberculosis to demonstrate modeling choices and how predictions are made to generate new insights and test interventions. We discuss some of the current challenges of incorporating novel datasets, rigorously training computational biologists, and increasing the reach of MSMs. We also offer several promising future research directions of incorporating within-host dynamics into applications ranging from combinatorial treatment to epidemic response.

2.
STAR Protoc ; 4(3): 102442, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549035

RESUMEN

Biosafety level 3 decontamination precautions motivate measuring microbial colonies using consumable photography instead of expensive automated plate counters or smartphones, and assaying drug treatments-with multiple concentrations per treatment, replicates, and controls-produces hundreds of images. Here, we present a protocol for semi-automated image analysis by hand-tuning three parameters. The parameters control for non-uniform colony growth and artifacts such as lid condensation, reflections, and plating streaks. We describe steps to prepare images, tune parameters, and plot dose-response relationships. For complete details on the use and execution of this protocol, please refer to Larkins-Ford et al.1.


Asunto(s)
Contención de Riesgos Biológicos , Laboratorios , Recuento de Colonia Microbiana , Procesamiento de Imagen Asistido por Computador/métodos , Células Madre
3.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37319311

RESUMEN

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Antituberculosos , Moxifloxacino/uso terapéutico , Tuberculosis/tratamiento farmacológico
4.
PLOS Glob Public Health ; 3(2): e0001580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963087

RESUMEN

Tuberculosis (TB) elimination in the United States remains elusive, and community-specific, localized intervention strategies may be necessary to meet elimination goals. A better understanding of the genotypic diversity of Mtb, the population subgroups affected by different TB strains, and differences in disease presentation associated with these strains can aid in identifying risk groups and designing tailored interventions. We analyze TB incidence and genotype data from all Arkansas counties over an 11-year time span from 2010 through 2020. We use statistical methods and geographic information systems (GIS) to identify demographic and disease phenotypic characteristics that are associated with different Mtb genetic lineages in the study area. We found the following variables to be significantly associated with genetic lineage (p<0.05): patient county, patient birth country, patient ethnicity, race, IGRA result, disease site, chest X-ray result, whether or not a case was identified as part of a cluster, patient age, occupation risk, and date arrived in the US. Different Mtb lineages affect different subpopulations in Arkansas. Lineage 4 (EuroAmerican) and Lineage 2 (East Asian) are most prevalent, although the spatial distributions differ substantially, and lineage 2 (East Asian) is more frequently associated with case clusters. The Marshallese remain a particularly high-risk group for TB in Arkansas.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38222943

RESUMEN

Mathematical and computational models of biological systems are increasingly complex, typically comprised of hybrid multi-scale methods such as ordinary differential equations, partial differential equations, agent-based and rule-based models, etc. These mechanistic models concurrently simulate detail at resolutions of whole host, multi-organ, organ, tissue, cellular, molecular, and genomic dynamics. Lacking analytical and numerical methods, solving complex biological models requires iterative parameter sampling-based approaches to establish appropriate ranges of model parameters that capture corresponding experimental datasets. However, these models typically comprise large numbers of parameters and therefore large degrees of freedom. Thus, fitting these models to multiple experimental datasets over time and space presents significant challenges. In this work we undertake the task of reviewing, testing, and advancing calibration practices across models and dataset types to compare methodologies for model calibration. Evaluating the process of calibrating models includes weighing strengths and applicability of each approach as well as standardizing calibration methods. Our work compares the performance of our model agnostic Calibration Protocol (CaliPro) with approximate Bayesian computing (ABC) to highlight strengths, weaknesses, synergies, and differences among these methods. We also present next-generation updates to CaliPro. We explore several model implementations and suggest a decision tree for selecting calibration approaches to match dataset types and modeling constraints.

6.
Sci Rep ; 12(1): 20731, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456599

RESUMEN

Some persistent infections provide a level of immunity that protects against reinfection with the same pathogen, a process referred to as concomitant immunity. To explore the phenomenon of concomitant immunity during Mycobacterium tuberculosis infection, we utilized HostSim, a previously published virtual host model of the immune response following Mtb infection. By simulating reinfection scenarios and comparing with data from non-human primate studies, we propose a hypothesis that the durability of a concomitant immune response against Mtb is intrinsically tied to levels of tissue resident memory T cells (Trms) during primary infection, with a secondary but important role for circulating Mtb-specific T cells. Further, we compare HostSim reinfection experiments to observational TB studies from the pre-antibiotic era to predict that the upper bound of the lifespan of resident memory T cells in human lung tissue is likely 2-3 years. To the authors' knowledge, this is the first estimate of resident memory T-cell lifespan in humans. Our findings are a first step towards demonstrating the important role of Trms in preventing disease and suggest that the induction of lung Trms is likely critical for vaccine success.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antibacterianos , Reinfección , Tórax
7.
Cell Rep ; 39(7): 110826, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584684

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a global health concern, yearly resulting in 10 million new cases of active TB. Immunologic investigation of lung granulomas is essential for understanding host control of bacterial replication. Here, we identify and compare the pathological, cellular, and functional differences in granulomas at 4, 12, and 20 weeks post-infection in Chinese cynomolgus macaques. Original granulomas differ in transcription-factor expression within adaptive lymphocytes, with those at 12 weeks showing higher frequencies of CD8+T-bet+ T cells, while CD4+T-bet+ T cells increase at 20 weeks post-infection. The appearance of T-bet+ adaptive T cells at 12 and 20 weeks is coincident with a reduction in bacterial burden, suggesting their critical role in Mtb control. This study highlights the evolution of T cell responses within lung granulomas, suggesting that vaccines promoting the development and migration of T-bet+ T cells would enhance mycobacterial control.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Linfocitos T CD4-Positivos , Granuloma/patología , Macaca fascicularis , Linfocitos T , Factores de Transcripción TCF
8.
J Theor Biol ; 539: 111042, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35114195

RESUMEN

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the world's deadliest infectious diseases and remains a significant global health burden. TB disease and pathology can present clinically across a spectrum of outcomes, ranging from total sterilization of infection to active disease. Much remains unknown about the biology that drives an individual towards various clinical outcomes as it is challenging to experimentally address specific mechanisms driving clinical outcomes. Furthermore, it is unknown whether numbers of immune cells in the blood accurately reflect ongoing events during infection within human lungs. Herein, we utilize a systems biology approach by developing a whole-host model of the immune response to Mtb across multiple physiologic and time scales. This model, called HostSim, tracks events at the cellular, granuloma, organ, and host scale and represents the first whole-host, multi-scale model of the immune response following Mtb infection. We show that this model can capture various aspects of human and non-human primate TB disease and predict that biomarkers in the blood may only faithfully represent events in the lung at early time points after infection. We posit that HostSim, as a first step toward personalized digital twins in TB research, offers a powerful computational tool that can be used in concert with experimental approaches to understand and predict events about various aspects of TB disease and therapeutics.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Granuloma/patología , Pulmón/microbiología , Primates
10.
Front Immunol ; 12: 712457, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675916

RESUMEN

Neutrophil infiltration into tuberculous granulomas is often associated with higher bacteria loads and severe disease but the basis for this relationship is not well understood. To better elucidate the connection between neutrophils and pathology in primate systems, we paired data from experimental studies with our next generation computational model GranSim to identify neutrophil-related factors, including neutrophil recruitment, lifespan, and intracellular bacteria numbers, that drive granuloma-level outcomes. We predict mechanisms underlying spatial organization of neutrophils within granulomas and identify how neutrophils contribute to granuloma dissemination. We also performed virtual deletion and depletion of neutrophils within granulomas and found that neutrophils play a nuanced role in determining granuloma outcome, promoting uncontrolled bacterial growth in some and working to contain bacterial growth in others. Here, we present three key results: We show that neutrophils can facilitate local dissemination of granulomas and thereby enable the spread of infection. We suggest that neutrophils influence CFU burden during both innate and adaptive immune responses, implying that they may be targets for therapeutic interventions during later stages of infection. Further, through the use of uncertainty and sensitivity analyses, we predict which neutrophil processes drive granuloma severity and structure.


Asunto(s)
Simulación por Computador , Modelos Inmunológicos , Mycobacterium tuberculosis/inmunología , Infiltración Neutrófila , Neutrófilos/inmunología , Tuberculoma/inmunología , Inmunidad Adaptativa , Animales , Carga Bacteriana , Calibración , Quimiotaxis de Leucocito , Citocinas/metabolismo , Inmunidad Innata , Macaca fascicularis , Fagocitosis , Tuberculoma/patología
11.
Math Biosci ; 337: 108593, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865847

RESUMEN

Computational and mathematical models in biology rely heavily on the parameters that characterize them. However, robust estimates for their values are typically elusive and thus a large parameter space becomes necessary for model study, particularly to make translationally impactful predictions. Sampling schemes exploring parameter spaces for models are used for a variety of purposes in systems biology, including model calibration and sensitivity analysis. Typically, random sampling is used; however, when models have a high number of unknown parameters or the models are highly complex, computational cost becomes an important factor. This issue can be reduced through the use of efficient sampling schemes such as Latin hypercube sampling (LHS) and Sobol sequences. In this work, we compare and contrast three sampling schemes - random sampling, LHS, and Sobol sequences - for the purposes of performing both parameter sensitivity analysis and model calibration. In addition, we apply these analyses to different types of computational and mathematical models of varying complexity: a simple ODE model, a complex ODE model, and an agent-based model. In general, the sampling scheme had little effect when used for calibration efforts, but when applied to sensitivity analyses, Sobol sequences exhibited faster convergence. While the observed benefit to convergence is relatively small, Sobol sequences are computationally less expensive to compute than LHS samples and also have the benefit of being deterministic, which allows for better reproducibility of results.


Asunto(s)
Modelos Biológicos , Biología de Sistemas , Calibración , Proyectos de Investigación , Biología de Sistemas/métodos
12.
Cell Mol Bioeng ; 14(1): 31-47, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643465

RESUMEN

INTRODUCTION: Mathematical and computational modeling have a long history of uncovering mechanisms and making predictions for biological systems. However, to create a model that can provide relevant quantitative predictions, models must first be calibrated by recapitulating existing biological datasets from that system. Current calibration approaches may not be appropriate for complex biological models because: 1) many attempt to recapitulate only a single aspect of the experimental data (such as a median trend) or 2) Bayesian techniques require specification of parameter priors and likelihoods to experimental data that cannot always be confidently assigned. A new calibration protocol is needed to calibrate complex models when current approaches fall short. METHODS: Herein, we develop CaliPro, an iterative, model-agnostic calibration protocol that utilizes parameter density estimation to refine parameter space and calibrate to temporal biological datasets. An important aspect of CaliPro is the user-defined pass set definition, which specifies how the model might successfully recapitulate experimental data. We define the appropriate settings to use CaliPro. RESULTS: We illustrate the usefulness of CaliPro through four examples including predator-prey, infectious disease transmission, and immune response models. We show that CaliPro works well for both deterministic, continuous model structures as well as stochastic, discrete models and illustrate that CaliPro can work across diverse calibration goals. CONCLUSIONS: We present CaliPro, a new method for calibrating complex biological models to a range of experimental outcomes. In addition to expediting calibration, CaliPro may be useful in already calibrated parameter spaces to target and isolate specific model behavior for further analysis.

13.
PLoS Comput Biol ; 16(12): e1008520, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370784

RESUMEN

Mycobacterium tuberculosis (Mtb) infection causes tuberculosis (TB), a disease characterized by development of granulomas. Granulomas consist of activated immune cells that cluster together to limit bacterial growth and restrict dissemination. Control of the TB epidemic has been limited by lengthy drug regimens, antibiotic resistance, and lack of a robustly efficacious vaccine. Fibrosis commonly occurs during treatment and is associated with both positive and negative disease outcomes in TB but little is known about the processes that initiate fibrosis in granulomas. Human and nonhuman primate granulomas undergoing fibrosis can have spindle-shaped macrophages with fibroblast-like morphologies suggesting a relationship between macrophages, fibroblasts, and granuloma fibrosis. This relationship has been difficult to investigate because of the limited availability of human pathology samples, the time scale involved in human TB, and overlap between fibroblast and myeloid cell markers in tissues. To better understand the origins of fibrosis in TB, we used a computational model of TB granuloma biology to identify factors that drive fibrosis over the course of local disease progression. We validated the model with granulomas from nonhuman primates to delineate myeloid cells and lung-resident fibroblasts. Our results suggest that peripheral granuloma fibrosis, which is commonly observed, can arise through macrophage-to-myofibroblast transformation (MMT). Further, we hypothesize that MMT is induced in M1 macrophages through a sequential combination of inflammatory and anti-inflammatory signaling in granuloma macrophages. We predict that MMT may be a mechanism underlying granuloma-associated fibrosis and warrants further investigation into myeloid cells as drivers of fibrotic disease.


Asunto(s)
Granuloma/patología , Macrófagos/patología , Miofibroblastos/patología , Biología de Sistemas , Tuberculosis/patología , Fibrosis , Humanos , Mycobacterium tuberculosis/inmunología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo
14.
Bull Math Biol ; 82(6): 78, 2020 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-32535697

RESUMEN

We present a framework for discrete network-based modeling of TB epidemiology in US counties using publicly available synthetic datasets. We explore the dynamics of this modeling framework by simulating the hypothetical spread of disease over 2 years resulting from a single active infection in Washtenaw County, MI. We find that for sufficiently large transmission rates that active transmission outweighs reactivation, disease prevalence is sensitive to the contact weight assigned to transmissions between casual contacts (that is, contacts that do not share a household, workplace, school, or group quarter). Workplace and casual contacts contribute most to active disease transmission, while household, school, and group quarter contacts contribute relatively little. Stochastic features of the model result in significant uncertainty in the predicted number of infections over time, leading to challenges in model calibration and interpretation of model-based predictions. Finally, predicted infections were more localized by household location than would be expected if they were randomly distributed. This modeling framework can be refined in later work to study specific county and multi-county TB epidemics in the USA.


Asunto(s)
Modelos Biológicos , Tuberculosis/epidemiología , Biología Computacional , Simulación por Computador , Trazado de Contacto/estadística & datos numéricos , Bases de Datos Factuales/estadística & datos numéricos , Epidemias/estadística & datos numéricos , Humanos , Conceptos Matemáticos , Procesos Estocásticos , Biología Sintética , Análisis de Sistemas , Tuberculosis/transmisión , Estados Unidos/epidemiología
15.
PLoS Comput Biol ; 16(5): e1007280, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433646

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb infection, are complex structures that form in lungs, composed of immune cells surrounding bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically contain and immunologically restrain bacteria growth, some granulomas are unable to control Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, either resulting in additional granuloma formation (local or non-local) or spread to airways or lymph nodes. Dissemination is associated with development of active TB. It is challenging to experimentally address specific mechanisms driving dissemination from TB lung granulomas. Herein, we develop a novel hybrid multi-scale computational model, MultiGran, that tracks Mtb infection within multiple granulomas in an entire lung. MultiGran follows cells, cytokines, and bacterial populations within each lung granuloma throughout the course of infection and is calibrated to multiple non-human primate (NHP) cellular, granuloma, and whole-lung datasets. We show that MultiGran can recapitulate patterns of in vivo local and non-local dissemination, predict likelihood of dissemination, and predict a crucial role for multifunctional CD8+ T cells and macrophage dynamics for preventing dissemination.


Asunto(s)
Biología Computacional/métodos , Predicción/métodos , Tuberculosis/patología , Animales , Linfocitos T CD8-positivos/inmunología , Simulación por Computador , Citocinas/inmunología , Granuloma/microbiología , Granuloma del Sistema Respiratorio/microbiología , Granuloma del Sistema Respiratorio/fisiopatología , Humanos , Pulmón/microbiología , Ganglios Linfáticos/patología , Macrófagos/inmunología , Modelos Teóricos , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar/microbiología
16.
Matrix Biol ; 91-92: 35-50, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32438056

RESUMEN

The architectural complexity of the lung is crucial to its ability to function as an organ of gas exchange; the branching tree structure of the airways transforms the tracheal cross-section of only a few square centimeters to a blood-gas barrier with a surface area of tens of square meters and a thickness on the order of a micron or less. Connective tissue comprised largely of collagen and elastic fibers provides structural integrity for this intricate and delicate system. Homeostatic maintenance of this connective tissue, via a balance between catabolic and anabolic enzyme-driven processes, is crucial to life. Accordingly, when homeostasis is disrupted by the excessive production of connective tissue, lung function deteriorates rapidly with grave consequences leading to chronic lung conditions such as pulmonary fibrosis. Understanding how pulmonary fibrosis develops and alters the link between lung structure and function is crucial for diagnosis, prognosis, and therapy. Further information gained could help elaborate how the healing process breaks down leading to chronic disease. Our understanding of fibrotic disease is greatly aided by the intersection of wet lab studies and mathematical and computational modeling. In the present review we will discuss how multi-scale modeling has facilitated our understanding of pulmonary fibrotic disease as well as identified opportunities that remain open and have produced techniques that can be incorporated into this field by borrowing approaches from multi-scale models of fibrosis beyond the lung.


Asunto(s)
Tejido Elástico/metabolismo , Proteínas de la Matriz Extracelular/genética , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Modelos Biológicos , Enfermedad Crónica , Simulación por Computador , Tejido Conectivo/metabolismo , Tejido Conectivo/patología , Citocinas/genética , Citocinas/metabolismo , Tejido Elástico/química , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Inflamación , Pulmón/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
17.
Front Pharmacol ; 11: 333, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265707

RESUMEN

Tuberculosis (TB) remains as one of the world's deadliest infectious diseases despite the use of standardized antibiotic therapies. Recommended therapy for drug-susceptible TB is up to 6 months of antibiotics. Factors that contribute to lengthy regimens include antibiotic underexposure in lesions due to poor pharmacokinetics (PK) and complex granuloma compositions, but it is difficult to quantify how individual antibiotics are affected by these factors and to what extent these impact treatments. We use our next-generation multi-scale computational model to simulate granuloma formation and function together with antibiotic pharmacokinetics and pharmacodynamics, allowing us to predict conditions leading to granuloma sterilization. In this work, we focus on how PK variability, determined from human PK data, and granuloma heterogeneity each quantitatively impact granuloma sterilization. We focus on treatment with the standard regimen for TB of four first-line antibiotics: isoniazid, rifampin, ethambutol, and pyrazinamide. We find that low levels of antibiotic concentration due to naturally occurring PK variability and complex granulomas leads to longer granuloma sterilization times. Additionally, the ability of antibiotics to distribute in granulomas and kill different subpopulations of bacteria contributes to their specialization in the more efficacious combination therapy. These results can inform strategies to improve antibiotic therapy for TB.

18.
Front Immunol ; 11: 613638, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552077

RESUMEN

Tuberculosis (TB) is a worldwide health problem; successful interventions such as vaccines and treatment require a 2better understanding of the immune response to infection with Mycobacterium tuberculosis (Mtb). In many infectious diseases, pathogen-specific T cells that are recruited to infection sites are highly responsive and clear infection. Yet in the case of infection with Mtb, most individuals are unable to clear infection leading to either an asymptomatically controlled latent infection (the majority) or active disease (roughly 5%-10% of infections). The hallmark of Mtb infection is the recruitment of immune cells to lungs leading to development of multiple lung granulomas. Non-human primate models of TB indicate that on average <10% of T cells within granulomas are Mtb-responsive in terms of cytokine production. The reason for this reduced responsiveness is unknown and it may be at the core of why humans typically are unable to clear Mtb infection. There are a number of hypotheses as to why this reduced responsiveness may occur, including T cell exhaustion, direct downregulation of antigen presentation by Mtb within infected macrophages, the spatial organization of the granuloma itself, and/or recruitment of non-Mtb-specific T cells to lungs. We use a systems biology approach pairing data and modeling to dissect three of these hypotheses. We find that the structural organization of granulomas as well as recruitment of non-specific T cells likely contribute to reduced responsiveness.


Asunto(s)
Granuloma del Sistema Respiratorio/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Citocinas/inmunología , Granuloma del Sistema Respiratorio/microbiología , Pulmón/inmunología , Pulmón/microbiología , Macaca fascicularis , Macrófagos/microbiología , Primates , Tuberculosis Pulmonar/microbiología
19.
J Immunol ; 204(3): 644-659, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31862711

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be a major global health problem. Lung granulomas are organized structures of host immune cells that function to contain the bacteria. Cytokine expression is a critical component of the protective immune response, but inappropriate cytokine expression can exacerbate TB. Although the importance of proinflammatory cytokines in controlling M. tuberculosis infection has been established, the effects of anti-inflammatory cytokines, such as IL-10, in TB are less well understood. To investigate the role of IL-10, we used an Ab to neutralize IL-10 in cynomolgus macaques during M. tuberculosis infection. Anti-IL-10-treated nonhuman primates had similar overall disease outcomes compared with untreated control nonhuman primates, but there were immunological changes in granulomas and lymph nodes from anti-IL-10-treated animals. There was less thoracic inflammation and increased cytokine production in lung granulomas and lymph nodes from IL-10-neutralized animals at 3-4 wk postinfection compared with control animals. At 8 wk postinfection, lung granulomas from IL-10-neutralized animals had reduced cytokine production but increased fibrosis relative to control animals. Although these immunological changes did not affect the overall disease burden during the first 8 wk of infection, we paired computational modeling to explore late infection dynamics. Our findings support that early changes occurring in the absence of IL-10 may lead to better bacterial control later during infection. These unique datasets provide insight into the contribution of IL-10 to the immunological balance necessary for granulomas to control bacterial burden and disease pathology in M. tuberculosis infection.


Asunto(s)
Granuloma/inmunología , Inflamación/inmunología , Interleucina-10/metabolismo , Pulmón/patología , Ganglios Linfáticos/inmunología , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunidad , Pulmón/inmunología , Macaca fascicularis , Fibrosis Pulmonar
20.
J Theor Biol ; 469: 1-11, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30851550

RESUMEN

According to the World Health Organization, tuberculosis (TB) is the leading cause of death from infectious disease worldwide (WHO, 2017). While there is no effective vaccine against adult pulmonary TB, more than a dozen vaccine candidates are in the clinical trial pipeline. These include both pre-exposure vaccines to prevent initial infections and post-exposure vaccines to prevent reactivation of latent disease. Many epidemiological models have been used to study TB, but most have not included a continuous age structure and the possibility of both pre- and post-exposure vaccination. Incorporating age-dependent death rates, disease properties, and social contact data allows for more realistic modeling of disease spread. We propose a continuous age-structured model for the epidemiology of tuberculosis with pre- and post-exposure vaccination. We use uncertainty and sensitivity analysis to make predictions about the efficacy of different vaccination strategies in a non-endemic setting (United States) and an endemic setting (Cambodia). In particular, we determine optimal age groups to target for pre-exposure and post-exposure vaccination in both settings. We find that the optimal age groups tend to be younger for Cambodia than for the US, and that post-exposure vaccination has a significantly larger effect than pre-exposure vaccination in the US.


Asunto(s)
Enfermedades Endémicas/prevención & control , Tuberculosis/inmunología , Vacunación , Distribución por Edad , Factores de Edad , Calibración , Cambodia/epidemiología , Humanos , Incidencia , Recién Nacido , Modelos Inmunológicos , Tuberculosis/epidemiología , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...