Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 28(4): 317-27, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24532712

RESUMEN

Chromatin modulators are emerging as attractive drug targets, given their widespread implication in human cancers and susceptibility to pharmacological inhibition. Here we establish the histone methyltransferase G9a/EHMT2 as a selective regulator of fast proliferating myeloid progenitors with no discernible function in hematopoietic stem cells (HSCs). In mouse models of acute myeloid leukemia (AML), loss of G9a significantly delays disease progression and reduces leukemia stem cell (LSC) frequency. We connect this function of G9a to its methyltransferase activity and its interaction with the leukemogenic transcription factor HoxA9 and provide evidence that primary human AML cells are sensitive to G9A inhibition. Our results highlight a clinical potential of G9A inhibition as a means to counteract the proliferation and self-renewal of AML cells by attenuating HoxA9-dependent transcription.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células Madre Hematopoyéticas/enzimología , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Leucemia Mieloide Aguda/patología , Ratones Endogámicos C57BL , Quinazolinas/farmacología
2.
Aging Cell ; 11(2): 252-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22221414

RESUMEN

The African annual fish Nothobranchius furzeri emerged as a new model for age research over recent years. Nothobranchius furzeri show an exceptionally short lifespan, age-dependent cognitive/behavioral decline, expression of age-related biomarkers, and susceptibility to lifespan manipulation. In addition, laboratory strains differ largely in lifespan. Here, we set out to study the genetics of lifespan determination. We crossed a short- to a long-lived strain, recorded lifespan, and established polymorphic markers. On the basis of genotypes of 411 marker loci in 404 F(2) progeny, we built a genetic map comprising 355 markers at an average spacing of 5.5 cM, 22 linkage groups (LGs) and 1965 cM. By combining marker data with lifespan values, we identified one genome-wide highly significant quantitative trait locus (QTL) on LG 9 (P < 0.01), which explained 11.3% of the F(2) lifespan variance, and three suggestive QTLs on LG 11, 14, and 17. We characterized the highly significant QTL by synteny analysis, because a genome sequence of N. furzeri was not available. We located the syntenic region on medaka chromosome 5, identified candidate genes, and performed fine mapping, resulting in a c. 40% reduction of the initial 95% confidence interval. We show both that lifespan determination in N. furzeri is polygenic, and that candidate gene detection is easily feasible by cross-species analysis. Our work provides first results on the way to identify loci controlling lifespan in N. furzeri and illustrates the potential of this vertebrate species as a genetic model for age research.


Asunto(s)
Envejecimiento , Peces/genética , Sitios de Carácter Cuantitativo , Alelos , Animales , Cromosomas/genética , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Modelos Biológicos
3.
Genetics ; 183(4): 1385-95, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19786620

RESUMEN

The African fish Nothobranchius furzeri is the shortest-lived vertebrate species that can reproduce in captivity, with a median life span of 9-11 weeks for the shortest-lived strain. Natural populations of N. furzeri display differences in life span, aging biomarkers, behavior, and color, which make N. furzeri a unique vertebrate system for studying the genetic basis of these traits. We mapped regions of the genome involved in sex determination and tail color by genotyping microsatellite markers in the F(2) progeny of a cross between a short-lived, yellow-tailed strain and a long-lived, red-tailed strain of N. furzeri. We identified one region linked with the yellow/red tail color that maps close to melanocortin 1 receptor (mc1r), a gene involved in pigmentation in several vertebrate species. Analysis of the segregation of sex-linked markers revealed that N. furzeri has a genetic sex determination system with males as the heterogametic sex and markedly reduced recombination in the male sex-determining region. Our results demonstrate that both naturally-evolved pigmentation differences and sex determination in N. furzeri are controlled by simple genetic mechanisms and set the stage for the molecular genetic dissection of factors underlying such traits. The microsatellite-based linkage map we developed for N. furzeri will also facilitate analysis of the genetic architecture of traits that characterize this group of vertebrates, including short life span and adaptation to extreme environmental conditions.


Asunto(s)
Ciprinodontiformes/anatomía & histología , Ciprinodontiformes/genética , Sitios Genéticos/genética , Longevidad , Pigmentación/genética , Procesos de Determinación del Sexo , Cola (estructura animal)/anatomía & histología , Animales , Mapeo Cromosómico , Ciprinodontiformes/fisiología , Femenino , Ligamiento Genético , Hibridación Genética , Masculino , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Receptor de Melanocortina Tipo 1/genética , Caracteres Sexuales , Sintenía
4.
Mech Ageing Dev ; 130(5): 290-6, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19428446

RESUMEN

Age research in vertebrates is often limited by the longevity of available models. The teleost fish Nothobranchius furzeri has an exceptionally short lifespan with 3.5 months for the laboratory strain GRZ and about 6 months for the wild-derived strain MZM-0403. Here we have investigated telomere length in muscle and skin tissue of young and old fish of both strains using different methods. We found age-dependent telomere shortening in the MZM-0403 strain with the longer lifespan, whereas the short-lived GRZ strain showed no significant telomere shortening with advanced age. Sequencing of the two main telomerase genes Tert and Terc revealed that both genes are highly conserved between the N. furzeri strains while there is little conservation to other fish species and humans. Both genes are ubiquitously expressed in N. furzeri and expression levels of Tert and Terc correlate with telomerase activity in a tissue-specific manner. Unexpectedly, the expression level of Tert is increased in aged muscle and skin tissue of MZM-0403 suggesting that telomeres shorten upon ageing despite increased Tert expression and hence high telomerase activity. We further conclude that the extremely short lifespan of the GRZ strain is not caused by diminished telomerase activity or accelerated telomere shortening.


Asunto(s)
Ciprinodontiformes/fisiología , Regulación Enzimológica de la Expresión Génica , Longevidad/genética , Telomerasa/genética , Telómero/ultraestructura , Animales , Secuencia de Bases , Secuencia Conservada , Ciprinodontiformes/genética , Telómero/enzimología
5.
Genome Biol ; 10(2): R16, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19210790

RESUMEN

BACKGROUND: The annual fish Nothobranchius furzeri is the vertebrate with the shortest known life span in captivity. Fish of the GRZ strain live only three to four months under optimal laboratory conditions, show explosive growth, early sexual maturation and age-dependent physiological and behavioral decline, and express aging related biomarkers. Treatment with resveratrol and low temperature significantly extends the maximum life span. These features make N. furzeri a promising new vertebrate model for age research. RESULTS: To contribute to establishing N. furzeri as a new model organism, we provide a first insight into its genome and a comparison to medaka, stickleback, tetraodon and zebrafish. The N. furzeri genome contains 19 chromosomes (2n = 38). Its genome of between 1.6 and 1.9 Gb is the largest among the analyzed fish species and has, at 45%, the highest repeat content. Remarkably, tandem repeats comprise 21%, which is 4-12 times more than in the other four fish species. In addition, G+C-rich tandem repeats preferentially localize to centromeric regions. Phylogenetic analysis based on coding sequences identifies medaka as the closest relative. Genotyping of an initial set of 27 markers and multi-locus fingerprinting of one microsatellite provides the first molecular evidence that the GRZ strain is highly inbred. CONCLUSIONS: Our work presents a first basis for systematic genomic and genetic analyses aimed at understanding the mechanisms of life span determination in N. furzeri.


Asunto(s)
Envejecimiento/genética , Genoma/genética , Longevidad/genética , Secuencias Repetidas en Tándem , Animales , Antioxidantes/farmacología , Frío , Peces , Marcadores Genéticos , Modelos Animales , Filogenia , Resveratrol , Estilbenos/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-19014633

RESUMEN

BACKGROUND: Several lines of evidence indicate that the central cannabinoid receptor 1 (CNR1) as well as the major endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA) and monoglyceride lipase (MGLL) are implicated in mediating the orexigenic effects of cannabinoids. The aim of this study was to analyse whether nucleotide sequence variations in the CNR1, FAAH, NAAA and MGLL genes are associated with anorexia nervosa (AN). METHODS: We analysed the association of a previously described (AAT)n repeat in the 3' flanking region of CNR1 as well as a total of 15 single nucleotide polymorphisms (SNPs) representative of regions with restricted haplotype diversity in CNR1, FAAH, NAAA or MGLL in up to 91 German AN trios (patient with AN and both biological parents) using the transmission-disequilibrium-test (TDT). One SNP was additionally analysed in an independent case-control study comprising 113 patients with AN and 178 normal weight controls. Genotyping was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, ARMS-PCR or using 3730xl capillary sequencers. RESULTS: The TDT revealed no evidence for association for any of the SNPs or the (AAT)n repeat with AN (all two-sided uncorrected p-values > 0.05). The lowest p-value of 0.11 was detected for the A-allele of the CNR1 SNP rs1049353 for which the transmission rate was 59% (95% confidence interval 47%...70%). Further genotyping of rs1049353 in 113 additional independent patients with AN and 178 normal weight controls could not substantiate the initial trend for association (p = 1.00). CONCLUSION: As we found no evidence for an association of genetic variation in CNR1, FAAH, NAAA and MGLL with AN, we conclude that genetic variations in these genes do not play a major role in the etiology of AN in our study groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA