Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
JCI Insight ; 9(6)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358825

RESUMEN

Despite effective antibiotic therapy, brain-destructive inflammation often cannot be avoided in pneumococcal meningitis. The causative signals are mediated predominantly through TLR-recruited myeloid differentiation primary response adaptor 88 (MyD88), as indicated by a dramatic pneumococcal meningitis phenotype of Myd88-/- mice. Because lipoproteins and single-stranded RNA are crucial for recognition of Gram-positive bacteria such as Streptococcus pneumoniae by the host immune system, we comparatively analyzed the disease courses of Myd88-/- and Tlr2-/- Tlr13-/- mice. Their phenotypic resemblance indicated TLR2 and -13 as master sensors of S. pneumoniae in the cerebrospinal fluid. A neutralizing anti-TLR2 antibody (T2.5) and chloroquine (CQ) - the latter applied here as an inhibitor of murine TLR13 and its human ortholog TLR8 - abrogated activation of murine and human primary immune cells exposed to antibiotic-treated S. pneumoniae. The inhibitory effect of the T2.5/CQ cocktail was stronger than that of dexamethasone, the current standard adjunctive drug for pneumococcal meningitis. Accordingly, TLR2/TLR13 blockade concomitant with ceftriaxone application significantly improved the clinical course of pneumococcal meningitis compared with treatment with ceftriaxone alone or in combination with dexamethasone. Our study indicates the importance of murine TLR13 and human TLR8, besides TLR2, in pneumococcal meningitis pathology, and suggests their blockade as a promising antibiotic therapy adjunct.


Asunto(s)
Meningitis Neumocócica , Ratones , Humanos , Animales , Meningitis Neumocócica/tratamiento farmacológico , Meningitis Neumocócica/complicaciones , Meningitis Neumocócica/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Receptor Toll-Like 2/metabolismo , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 8 , Streptococcus pneumoniae , Encéfalo/metabolismo , Dexametasona/farmacología
2.
PLoS One ; 18(11): e0294142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38015955

RESUMEN

Urinary tract obstruction during renal development leads to inflammation, tubular apoptosis, and interstitial fibrosis. Toll like receptors (TLRs) expressed on leukocytes, myofibroblasts and renal cells play a central role in acute inflammation. TLR2 is activated by endogenous danger signals in the kidney; its contribution to renal injury in early life is still a controversial topic. We analyzed TLR2 for a potential role in the neonatal mouse model of congenital obstructive nephropathy. Inborn obstructive nephropathies are a leading cause of end-stage kidney disease in children. Thus, newborn Tlr2-/- and wild type (WT) C57BL/6 mice were subjected to complete unilateral ureteral obstruction (UUO) or sham-operation on the 2nd day of life. The neonatal kidneys were harvested and analyzed at days 7 and 14 of life. Relative expression levels of TLR2, caspase-8, Bcl-2, Bax, GSDMD, GSDME, HMGB1, TNF, galectin-3, α-SMA, MMP-2, and TGF-ß proteins were quantified semi-quantitatively by immunoblot analyses. Tubular apoptosis, proliferation, macrophage- and T-cell infiltration, tubular atrophy, and interstitial fibrosis were analyzed immunohistochemically. Neonatal Tlr2-/- mice kidneys exhibited less tubular and interstitial apoptosis as compared to those of WT C57BL/6 mice after UUO. UUO induced neonatally did trigger pyroptosis in kidneys, however to similar degrees in Tlr2-/- and WT mice. Also, tubular atrophy, interstitial fibrosis, tubular proliferation, as well as macrophage and T-cell infiltration were unremarkable. We conclude that while TLR2 mediates apoptosis in the kidneys of neonatal mice subjected to UUO, leukocyte recruitment, interstitial fibrosis, and consequent neonatal obstructive nephropathy might lack a TLR2 involvement.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Animales , Niño , Humanos , Ratones , Animales Recién Nacidos , Apoptosis , Atrofia/patología , Fibrosis , Inflamación/patología , Riñón/patología , Enfermedades Renales/patología , Ratones Endogámicos C57BL , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Obstrucción Ureteral/patología
3.
Front Immunol ; 14: 1277033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869001

RESUMEN

Introduction: Early sepsis is a life-threatening immune dysregulation believed to feature a "cytokine storm" due to activation of pattern recognition receptors by pathogen and danger associated molecular patterns. However, treatments with single toll-like receptor (TLR) blockers have shown no clinical benefit. We speculated that sepsis patients at the time of diagnosis are heterogeneous in relation to their cytokine production and its potential inhibition by a triple cocktail of TLR blockers. Accordingly, we analyzed inflammatory cytokine production in whole blood assays from early sepsis patients and determined the effects of triple TLR-blockade. Methods: Whole blood of 51 intensive care patients sampled within 24h of meeting Sepsis-3 criteria was incubated for 6h without or with specific TLR2, 4, and 7/8 stimuli or suspensions of heat-killed S. aureus or E. coli bacteria as pan-TLR challenges, and also with a combination of monoclonal antibodies against TLR2 and 4 and chloroquine (endosomal TLR inhibition), subsequent to dose optimization. Concentrations of tumor necrosis factor (TNF), Interleukin(IL)-6, IL-8, IL-10, IL-1α and IL-1ß were measured (multiplex ELISA) before and after incubation. Samples from 11 sex and age-matched healthy volunteers served as controls and for dose-finding studies. Results: Only a fraction of sepsis patient samples revealed ongoing cytokine production ex vivo despite sampling within 24 h of first meeting Sepsis-3 criteria. In dose finding studies, inhibition of TLR2, 4 and endosomal TLRs reliably suppressed cytokine production to specific TLR agonists and added bacteria. However, inflammatory cytokine production ex vivo was only suppressed in the high cytokine producing samples but not in the majority. The suppressive response to TLR-blockade correlated both with intraassay inflammatory cytokine production (r=0.29-0.68; p<0.0001-0.04) and cytokine baseline concentrations (r=0.55; p<0.0001). Discussion: Upon meeting Sepsis-3 criteria for less than 24 h, a mere quarter of patient samples exhibits a strong inflammatory phenotype, as characterized by increased baseline inflammatory cytokine concentrations and a stark TLR-dependent increase upon further ex vivo incubation. Thus, early sepsis patient cohorts as defined by Sepsis-3 criteria are very heterogeneous in regard to inflammation. Accordingly, proper ex vivo assays may be useful in septic individuals before embarking on immunomodulatory treatments.


Asunto(s)
Sepsis , Receptor Toll-Like 2 , Humanos , Receptor Toll-Like 2/genética , Escherichia coli , Staphylococcus aureus , Receptores Toll-Like , Citocinas , Sepsis/tratamiento farmacológico
4.
Cytotherapy ; 25(8): 821-836, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37055321

RESUMEN

BACKGROUND AIMS: Extracellular vesicles (EVs) harvested from conditioned media of human mesenchymal stromal cells (MSCs) suppress acute inflammation in various disease models and promote regeneration of damaged tissues. After successful treatment of a patient with acute steroid-refractory graft-versus-host disease (GVHD) using EVs prepared from conditioned media of human bone marrow-derived MSCs, this study focused on improving the MSC-EV production for clinical application. METHODS: Independent MSC-EV preparations all produced according to a standardized procedure revealed broad immunomodulatory differences. Only a proportion of the MSC-EV products applied effectively modulated immune responses in a multi-donor mixed lymphocyte reaction (mdMLR) assay. To explore the relevance of such differences in vivo, at first a mouse GVHD model was optimized. RESULTS: The functional testing of selected MSC-EV preparations demonstrated that MSC-EV preparations revealing immunomodulatory capabilities in the mdMLR assay also effectively suppress GVHD symptoms in this model. In contrast, MSC-EV preparations, lacking such in vitro activities, also failed to modulate GVHD symptoms in vivo. Searching for differences of the active and inactive MSC-EV preparations, no concrete proteins or miRNAs were identified that could serve as surrogate markers. CONCLUSIONS: Standardized MSC-EV production strategies may not be sufficient to warrant manufacturing of MSC-EV products with reproducible qualities. Consequently, given this functional heterogeneity, every individual MSC-EV preparation considered for the clinical application should be evaluated for its therapeutic potency before administration to patients. Here, upon comparing immunomodulating capabilities of independent MSC-EV preparations in vivo and in vitro, we found that the mdMLR assay was qualified for such analyses.


Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , MicroARNs , Humanos , Animales , Ratones , Medios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad Injerto contra Huésped/terapia , Células Madre Mesenquimatosas/metabolismo
5.
Acta Neuropathol Commun ; 10(1): 155, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309755

RESUMEN

Pneumococcal meningitis is associated with dysregulation of the coagulation cascade. Previously, we detected upregulation of cerebral plasminogen activator inhibitor-2 (PAI-2) mRNA expression during pneumococcal meningitis. Diverse functions have been ascribed to PAI-2, but its role remains unclear. We analyzed the function of SERPINB2 (coding for PAI-2) in patients with bacterial meningitis, in a well-established pneumococcal meningitis mouse model, using Serpinb2 knockout mice, and in vitro in wt and PAI-2-deficient bone marrow-derived macrophages (BMDMs). We measured PAI-2 in cerebrospinal fluid of patients, and performed functional, histopathological, protein and mRNA expression analyses in vivo and in vitro. We found a substantial increase of PAI-2 concentration in CSF of patients with pneumococcal meningitis, and up-regulation and increased release of PAI-2 in mice. PAI-2 deficiency was associated with increased mortality in murine pneumococcal meningitis and cerebral hemorrhages. Serpinb2-/- mice exhibited increased C5a levels, but decreased IL-10 levels in the brain during pneumococcal infection. Our in vitro experiments confirmed increased expression and release of PAI-2 by wt BMDM and decreased IL-10 liberation by PAI-2-deficient BMDM upon pneumococcal challenge. Our data show that PAI-2 is elevated during in pneumococcal meningitis in humans and mice. PAI-2 deficiency causes an inflammatory imbalance, resulting in increased brain pathology and mortality.


Asunto(s)
Meningitis Neumocócica , Humanos , Ratones , Animales , Meningitis Neumocócica/genética , Inhibidor 2 de Activador Plasminogénico/genética , Interleucina-10 , Ratones Noqueados , ARN Mensajero , Ratones Endogámicos C57BL
6.
PLoS One ; 17(8): e0273247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35981050

RESUMEN

RATIONALE: The immune profile of sepsis patients is incompletely understood and hyperinflammation and hypoinflammation may occur concurrently or sequentially. Immune checkpoint inhibition (ICI) may counter hypoinflammation but effects are uncertain. We tested the reactivity of septic whole blood to bacteria, Toll-like receptor (TLR) ligands and to ICI. METHODS: Whole blood assays of 61 patients' samples within 24h of meeting sepsis-3 criteria and 12 age and sex-matched healthy volunteers. Measurements included pattern/danger-associated molecular pattern (P/DAMP), cytokine concentrations at baseline and in response to TLR 2, 4, and 7/8 ligands, heat-inactivated Staphylococcus aureus or Escherichia coli, E.coli lipopolysaccharide (LPS), concentration of soluble and cellular immune checkpoint molecules, and cytokine concentrations in response to ICI directed against programmed-death receptor 1 (PD1), PD1-ligand 1, or cytotoxic T-lymphocyte antigen 4, both in the absence and presence of LPS. MAIN RESULTS: In sepsis, concentrations of P/DAMPs and inflammatory cytokines were increased and the latter increased further upon incubation ex vivo. However, cytokine responses to TLR 2, 4, and 7/8 ligands, heat-inactivated S. aureus or E. coli, and E. coli LPS were all depressed. Depression of the response to LPS was associated with increased in-hospital mortality. Despite increased PD-1 expression on monocytes and T-cells, and monocyte CTLA-4 expression, however, addition of corresponding checkpoint inhibitors to assays failed to increase inflammatory cytokine concentrations in the absence and presence of LPS. CONCLUSION: Patients first meeting Sepsis-3 criteria reveal 1) depressed responses to multiple TLR-ligands, bacteria, and bacterial LPS, despite concomitant inflammation, but 2) no response to immune checkpoint inhibition.


Asunto(s)
Sepsis , Receptor Toll-Like 2 , Citocinas/metabolismo , Escherichia coli/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Ligandos , Lipopolisacáridos , Monocitos/metabolismo , Sepsis/metabolismo , Staphylococcus aureus/metabolismo , Receptor Toll-Like 2/metabolismo , Receptores Toll-Like/metabolismo
7.
Front Immunol ; 13: 856230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464417

RESUMEN

Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNß production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.


Asunto(s)
Micotoxinas , Receptor Toll-Like 4 , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Citocinas/metabolismo , Células Dendríticas , Depsipéptidos , Células HEK293 , Humanos , Interleucina-12/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo
9.
Cell Immunol ; 371: 104471, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954490

RESUMEN

Demethylation of FOXP3-TSDR (Treg specific demethylated region) is a hallmark of stable differentiation and suppressive function of regulatory T (Treg) cells. Previous protocols aiming at human naïve T cell differentiation failed to implement a Treg cell specific epigenetic signature. Ten-eleven translocation (TET) enzymes catalyze DNA demethylation. Plasmids towardexpression of a fusion protein encompassing nonfunctional Cas9, the catalytic domain of TET1, blue fluorescent protein, and encoding single guide RNAs (sgRNAs) targeting specific segments of the FOXP3-TSDR were engineered and transfected into Jurkat T cells. FOXP3-TSDR methylation was analyzed by deep-amplicon bisulfite sequencing while cellular Foxp3, Tbet, Gata3, and Rorgt mRNA levels were determined by real-time PCR. Overexpression of dCas9TET1 significantly decreased Jurkat cell FOXP3-TSDR methylation and increased Foxp3 mRNA expression while expressions of master transcription factor mRNAs of other major T cell lineages remained largely unaffected. dCas9-TET1 construct transfection mediated Treg programming of patients' primary T cells might be feasible.


Asunto(s)
Sistemas CRISPR-Cas/genética , Metilación de ADN/genética , Factores de Transcripción Forkhead/metabolismo , Edición Génica/métodos , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Linfocitos T Reguladores/citología , Proteína 9 Asociada a CRISPR/genética , Diferenciación Celular/inmunología , Línea Celular Tumoral , Desmetilación , Factores de Transcripción Forkhead/genética , Factor de Transcripción GATA3/genética , Humanos , Células Jurkat , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , Linfocitos T Reguladores/inmunología
10.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33538775

RESUMEN

Human memory B cells (MBCs) are generated and diversified in secondary lymphoid tissues throughout the organism. A paired immunoglobulin (Ig)-gene repertoire analysis of peripheral blood (PB) and splenic MBCs from infant, adult, and elderly humans revealed that throughout life, circulating MBCs are comprehensively archived in the spleen. Archive MBC clones are systematically preserved and uncoupled from class-switching. Clonality in the spleen increases steadily, but boosts at midlife, thereby outcompeting small clones. The splenic marginal zone (sMZ) represents a primed MBC compartment, generated from a stochastic exchange within the archive memory pool. This is supported by functional assays, showing that PB and splenic CD21+ MBCs acquire transient CD21high expression upon NOTCH2-stimulation. Our study provides insight that the human MBC system in PB and spleen is composed of three interwoven compartments: the dynamic relationship of circulating, archive, and its subset of primed (sMZ) memory changes with age, thereby contributing to immune aging.


Asunto(s)
Envejecimiento/inmunología , Linfocitos B/inmunología , Memoria Inmunológica , Bazo/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biopsia , Donantes de Sangre , Línea Celular , Niño , Preescolar , Técnicas de Cocultivo , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Persona de Mediana Edad , Fenotipo , Receptores de Complemento 3d/metabolismo , Bazo/patología , Adulto Joven
11.
Cell Death Dis ; 12(1): 34, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33414473

RESUMEN

Host immune control plays a pivotal role in resolving primary hepatitis-B-virus (HBV) infections. The complex interaction between HBV and host immune cells, however, remains unclear. In this study, the transcriptional profiling of specimens from animals infected with woodchuck hepatitis virus (WHV) indicated TLR2 mRNA accumulation as most strongly impacted during WHV infection resolution as compared to other mRNAs. Analysis of blood transcriptional modules demonstrated that monocytes and B-cells were the predominantly activated cell types in animals that showed resolution of infection, which was similar to the response of TLR2-stimulated PBMCs. Further investigation of TLR2-stimulated B-cells pointed at interactions between activated TLR signaling, Akt-mTOR, and glucose metabolic pathways. Moreover, analysis of B-cells from Tlr2-/-, Trif-/-, Myd88-/-, and Trif/Myd88-/- mice challenged with HBV particles indicated B-cell function and glucose metabolism alterations is TLR2-MyD88-mTOR axis dependent. Overall, our study implicates B-cell TLR2 activation in HBV infection resolution.


Asunto(s)
Linfocitos B/inmunología , Virus de la Hepatitis B de la Marmota/inmunología , Hepatitis B/inmunología , Interacciones Microbiota-Huesped/inmunología , Monocitos/inmunología , Receptor Toll-Like 2/inmunología , Animales , Linfocitos B/citología , Células Cultivadas , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/inmunología , Serina-Treonina Quinasas TOR/inmunología
12.
J Immunol ; 203(11): 2872-2886, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31636238

RESUMEN

TLR2 serves as a costimulatory molecule on activated T cells. However, it is unknown how the functionality and antiviral activity of CD8+ T cells are modulated by direct TLR2 signaling. In this study, we looked at the TLR2-mediated enhancement of TCR-driven CD8+ T cell activation in vitro and in woodchuck hepatitis virus transgenic mice. In vitro stimulation of CD8+ T cells purified from C57BL/6 mice showed that TLR2 agonist Pam3CSK4 directly enhanced the TCR-dependent CD8+ T cell activation. Transcriptome analysis revealed that TLR2 signaling increased expression of bioenergy metabolism-related genes in CD8+ T cells, such as IRF4, leading to improved glycolysis and glutaminolysis. This was associated with the upregulation of genes related to immune regulation and functions such as T-bet and IFN-γ. Glycolysis and glutaminolysis were in turn essential for the TLR2-mediated enhancement of T cell activation. Administration of TLR2 agonist Pam3CSK4 promoted the expansion and functionality of vaccine-primed, Ag-specific CD8+ T cells in both wild type and transgenic mice and improved viral suppression. Thus, TLR2 could promote CD8+ T cell immunity through regulating the energy metabolism.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Lipopéptidos/administración & dosificación , Lipopéptidos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/inmunología
13.
Front Immunol ; 10: 2191, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572396

RESUMEN

The activation of TLR7 signaling in T cells accelerates antigen-specific responses. Such responses play an essential role in eliminating viral infections and can be anti-tumorigenic. However, the underlying mechanisms of how TLR7 can promote the optimal function of CD8+ T cells remain unclear. To investigate how TLR signaling directly contributes to CD8+ T cell functions, we examine the activation of cellular TLR7-related pathways and functional and metabolic alterations in TLR7-stimulated T cells during T cell receptor (TCR) signaling. In the present study, we investigated the activation of CD8+ T cells in response to direct stimulation by TLR7 ligands. TLR7 stimulation could promote the effector functions of purified CD8+ T cells in vitro. The TLR7-induced activation of CD8+ T cells occurs if CD8+ T cells were primed by αCD3 activation and increasingly expressed TLR7. MyD88 and AKT-mTOR signaling plays a critical role in TLR7-induced T cell activation. In addition to the upregulation of immune-related genes, metabolic alterations in CD8+ T cells, including the upregulation of glucose uptake and glycolysis, occurred by TLR7 stimulation. Glycolysis was found to be regulated by the AKT-mTOR pathway and a downstream transcription factor IRF4. Blocking glycolysis by either direct glucose deprivation or modulating the mTOR pathway and IRF4 expression was found to impair T cell activation and functions. Taken together, the activation of TLR7 signaling promotes the effector functions of CD8+ T cells by enhancing cellular glycolysis.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Glucólisis , Glicoproteínas de Membrana/inmunología , Receptor Toll-Like 7/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Células Cultivadas , Femenino , Imidazoles/farmacología , Factores Reguladores del Interferón/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/inmunología , Serina-Treonina Quinasas TOR/inmunología
14.
Cancer Res ; 79(18): 4715-4728, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31337655

RESUMEN

Tumor cell-derived extracellular vesicles (EV) convert normal myeloid cells into myeloid-derived suppressor cells (MDSC), inhibiting antitumor immune responses. Here, we show that EV from Ret mouse melanoma cells upregulate the expression of programmed cell death ligand 1 (PD-L1) on mouse immature myeloid cells (IMC), leading to suppression of T-cell activation. PD-L1 expression and the immunosuppressive potential of EV-generated MDSC were dependent on the expression of Toll-like receptors (TLR). IMC from Tlr4-/- mice failed to increase T-cell PD-L1 expression and immunosuppression with Ret-EV treatment, and this effect was dependent on heat-shock protein 86 (HSP86) as HSP86-deficient Ret cells could not stimulate PD-L1 expression on normal IMC; IMC from Tlr2-/- and Tlr7-/- mice demonstrated similar results, although to a lesser extent. HSP86-deficient Ret cells slowed tumor progression in vivo associated with decreased frequency of tumor-infiltrating PD-L1+CD11b+Gr1+ MDSC. EV from human melanoma cells upregulated PD-L1 and immunosuppression of normal monocytes dependent on HSP86. These findings highlight a novel EV-mediated mechanism of MDSC generation from normal myeloid cells, suggesting the importance of EV targeting for tumor therapy. SIGNIFICANCE: These findings validate the importance of TLR4 signaling in reprogramming normal myeloid cells into functional myeloid-derived suppressor cells.


Asunto(s)
Antígeno B7-H1/metabolismo , Vesículas Extracelulares/patología , Inmunosupresores/inmunología , Melanoma/patología , Células Supresoras de Origen Mieloide/inmunología , Receptor Toll-Like 4/fisiología , Receptor Toll-Like 7/fisiología , Animales , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Tolerancia Inmunológica , Inmunosupresores/metabolismo , Activación de Linfocitos , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología
15.
EBioMedicine ; 43: 380-391, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30992245

RESUMEN

BACKGROUND: Systemic inflammation induced by sterile or infectious insults is associated with an enhanced susceptibility to life-threatening opportunistic, mostly bacterial, infections due to unknown pathogenesis. Natural killer (NK) cells contribute to the defence against bacterial infections through the release of Interferon (IFN) γ in response to Interleukin (IL) 12. Considering the relevance of NK cells in the immune defence we investigated whether the function of NK cells is disturbed in patients suffering from serious systemic inflammation. METHODS: NK cells from severely injured patients were analysed from the first day after the initial inflammatory insult until the day of discharge in terms of IL-12 receptor signalling and IFN-γ synthesis. FINDINGS: During systemic inflammation, the expression of the IL-12 receptor ß2 chain, phosphorylation of signal transducer and activation 4, and IFN-γ production on/in NK cells was impaired upon exposure to Staphylococcus aureus. The profound suppression of NK cells developed within 24 h after the initial insult and persisted for several weeks. NK cells displayed signs of exhaustion. Extrinsic changes were mediated by the early and long-lasting presence of growth/differentiation factor (GDF) 15 in the circulation that signalled through the transforming growth factor ß receptor I and activated Smad1/5. Moreover, the concentration of GDF-15 in the serum inversely correlated with the IL-12 receptor ß2 expression on NK cells and was enhanced in patients who later acquired septic complications. INTERPRETATION: GDF-15 is associated with the development of NK cell dysfunction during systemic inflammation and might represent a novel target to prevent nosocomial infections. FUND: The study was supported by the Department of Orthopaedics and Trauma Surgery, University Hospital Essen.


Asunto(s)
Antígeno CD56/metabolismo , Infección Hospitalaria/etiología , Infección Hospitalaria/metabolismo , Factor 15 de Diferenciación de Crecimiento/sangre , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Adulto , Biomarcadores , Comorbilidad , Infección Hospitalaria/sangre , Infección Hospitalaria/diagnóstico , Femenino , Humanos , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Masculino , Persona de Mediana Edad , Fosforilación , Receptores de Interleucina-12/metabolismo , Factor de Transcripción STAT4/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo
16.
Viruses ; 11(2)2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781796

RESUMEN

The envelope protein (Env) is the only surface protein of the human immunodeficiency virus (HIV) and as such the exclusive target for protective antibody responses. Experimental evidences from mouse models suggest a modulating property of Env to steer antibody class switching towards the less effective antibody subclass IgG1 accompanied with strong TH2 helper responses. By simple physical linkage we were able to imprint this bias, exemplified by a low IgG2a/IgG1 ratio of antigen-specific antibodies, onto an unrelated antigen, namely the HIV capsid protein p24. Here, our results indicate the glycan moiety of Env as the responsible immune modulating activity. Firstly, in Card9-/- mice lacking specific C-Type lectin responsiveness, DNA immunization significantly increased the IgG2a/IgG1 ratio for the Env-specific antibodies while the antibody response against the F-protein of the respiratory syncytial virus (RSV) serving as control antigen remained unchanged. Secondly, sequential shortening of the Env encoding sequence revealed the C2V3 domain as responsible for the strong IgG1 responses and TH2 cytokine production. Removing all potential N-glycosylation sites from the C2V3 domain by site-specific mutagenesis reversed the vaccine-induced immune response towards a Th1-dominated T-cell response and a balanced IgG2a/IgG1 ratio. Accordingly, the stretch of oligomannose glycans in the C2V3 domain of Env might mediate a specific uptake and/or signaling modus in antigen presenting cells by involving interaction with an as yet unknown C-type lectin receptor. Our results contribute to a deeper understanding of the impact of Env glycosylation on HIV antigen-specific immune responses, which will further support HIV vaccine development.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , Inmunoglobulina G/inmunología , Vacunas de ADN/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Humoral , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th2/inmunología , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología
18.
J Clin Invest ; 128(8): 3535-3545, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771684

RESUMEN

Broad-spectrum antibiotics are widely used with patients in intensive care units (ICUs), many of whom develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa-induced pneumonia, the underlying mechanisms remain incompletely understood. Here we demonstrate that depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibited TLR-dependent production of a proliferation-inducing ligand (APRIL), resulting in a secondary IgA deficiency in the lung in mice and human ICU patients. Microbiota-dependent local IgA contributed to early antibacterial defense against P. aeruginosa. Consequently, P. aeruginosa-binding IgA purified from lamina propria culture or IgA hybridomas enhanced resistance of antibiotic-treated mice to P. aeruginosa infection after transnasal substitute. Our study provides a mechanistic explanation for the well-documented risk of P. aeruginosa infection following antimicrobial therapy, and we propose local administration of IgA as a novel prophylactic strategy.


Asunto(s)
Antibacterianos/farmacología , Deficiencia de IgA/tratamiento farmacológico , Inmunoglobulina A/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/inmunología , Animales , Humanos , Enfermedad Iatrogénica , Deficiencia de IgA/genética , Deficiencia de IgA/inmunología , Deficiencia de IgA/patología , Ratones , Ratones Noqueados , Neumonía Bacteriana/genética , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/patología
19.
EMBO Rep ; 18(12): 2144-2159, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29097394

RESUMEN

Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state.


Asunto(s)
Células Gigantes/microbiología , Macrófagos/fisiología , Mycobacterium/metabolismo , Óxido Nítrico/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Daño del ADN , Genes p53/fisiología , Células Gigantes/metabolismo , Humanos , Macrófagos/microbiología , Ratones , Mycobacterium/inmunología , Óxido Nítrico/biosíntesis
20.
Front Neurol ; 8: 455, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912751

RESUMEN

Danger-associated molecular patterns are released by damaged cells and trigger neuroinflammation through activation of non-specific pattern recognition receptors, e.g., toll-like receptors (TLRs). Since the role of TLR2 and 4 after traumatic brain injury (TBI) is still unclear, we examined the outcome and the expression of pro-inflammatory mediators after experimental TBI in Tlr2/4-/- and wild-type (WT) mice. Tlr2/4-/- and WT mice were subjected to controlled cortical injury and contusion volume and brain edema formation were assessed 24 h thereafter. Expression of inflammatory markers in brain tissue was measured by quantitative PCR 15 min, 3 h, 6 h, 12 h, and 24 h after controlled cortical impact (CCI). Contusion volume was significantly attenuated in Tlr2/4-/- mice (29.7 ± 0.7 mm3 as compared to 33.5 ± 0.8 mm3 in WT; p < 0.05) after CCI while brain edema was not affected. Only interleukin (IL)-1ß gene expression was increased after CCI in the Tlr2/4-/- relative to WT mice. Inducible nitric oxide synthetase, TNF, IL-6, and COX-2 were similar in injured WT and Tlr2/4-/- mice, while the increase in high-mobility group box 1 was attenuated at 6 h. TLR2 and 4 are consequently shown to potentially promote secondary brain injury after experimental CCI via neuroinflammation and may therefore represent a novel therapeutic target for the treatment of TBI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...