Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 400: 130653, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575094

RESUMEN

Enzyme-catalyzed reactions have relatively small environmental footprints. However, enzyme manufacturing significantly impacts the environment through dependence on traditional feedstocks. With the objective of determining the environmental impacts of enzyme production, the sustainability potential of six cradle-to-gate enzyme manufacturing systems focusing on glucose, sea lettuce, acetate, straw, and phototrophic growth, was thoroughly evaluated. Human and ecosystem toxicity categories dominated the overall impacts. Sea lettuce, straw, or phototrophic growth reduces fermentation-based emissions by 51.0, 63.7, and 79.7%, respectively. Substituting glucose-rich media demonstrated great potential to reduce marine eutrophication, land use, and ozone depletion. Replacing organic nitrogen sources with inorganic ones could further lower these impacts. Location-specific differences in electricity result in a 14% and a 27% reduction in the carbon footprint for operation in Denmark compared to the US and China. Low-impact feedstocks can be competitive if they manage to achieve substrate utilization rates and productivity levels of conventional enzyme production processes.


Asunto(s)
Enzimas , Enzimas/metabolismo , Simulación por Computador , Ambiente , Eutrofización , Ecosistema
2.
J Biotechnol ; 356: 19-29, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914617

RESUMEN

Halomonas smyrnensis AAD6T is a moderately halophilic bacterium proven to be a powerful biotechnological tool with its ability to accumulate valuable biopolymers such as levan and poly(3-hydroxybutyrate) (PHB). Levan is a fructose homopolymer with ß-2,6 fructofuranosidic linkages on the polymer backbone, and its distinctive applications in various industries such as food, pharmaceutical, medical, and chemical have been well-defined. On the other hand, PHB is a promising raw material to produce biodegradable plastics. Although it was shown in our previous studies that H. smyrnensis AAD6T exhibits one of the highest conversion yields of sucrose to levan reported to date, novel strategies are required to overcome high costs of levan production. In this study, we aimed at increasing levan productivity of H. smyrnensis AAD6T cultures using random mutagenesis techniques combined (i.e., ethyl methanesulfate treatment and/or ultraviolet irradiation). After several consecutive treatments, mutant strains BAE2, BAE5 and BAE6 were selected as efficient levan producers, as BAE2 standing out as the most efficient one not only in sucrose utilization and levan production rates, but also in final PHB concentrations. The mutants' whole genome sequences were analysed to determine the mutations occurred. Several mutations in genes related to central carbon metabolism and osmoregulation were found. Our results suggest that random mutagenesis can be a facile and efficient strategy to enhance the performance of extremophiles in adverse conditions.


Asunto(s)
Halomonas , Carbono/metabolismo , Fructanos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Sacarosa/metabolismo
3.
Antonie Van Leeuwenhoek ; 115(9): 1101-1112, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35840814

RESUMEN

A new exopolysaccharide (EPS) producing Gram-positive bacterium was isolated from the rhizosphere of Bouteloua dactyloides (buffalo grass) and its EPS product was structurally characterized. The isolate, designated as LB1-1A, was identified as Bacillus paralicheniformis based on 16S rRNA gene sequence and phylogenetic tree analysis. The EPS produced by LB1-1A was identified as a levan, having ß(2 → 6) linked backbone with ß(2 → 1) linkages at the branch points (4.66%). The isolate LB1-1A yielded large amount (~ 42 g/l) of levan having high weight average molecular weight (Mw) of 5.517 × 107 Da. The relatively low degree of branching and high molecular weight of this levan makes B. paralicheniformis LB1-1A a promising candidate for industrial applications.


Asunto(s)
Fructanos , Rizosfera , Bacillus , Peso Molecular , Filogenia , Poaceae , ARN Ribosómico 16S/genética
4.
J Agric Food Chem ; 69(44): 13125-13134, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34618455

RESUMEN

Thermostability and enzymatic activity are two vital indexes determining the application of an enzyme on an industrial scale. A truncated inulosucrase, Laga-ISΔ138-702, from Lactobacillus gasseri showed high catalysis activity. To further enhance its thermostability and activity, multiple sequence alignment (MSA) and rational design based on the modeled structure were performed. Variants A446E, S482A, I614M, and A627S were identified with an improved denaturation temperature (Tm) of more than 1 °C. A combinational mutation method was further carried out to explore the synergistic promotion effects of single-point mutants. Additionally, 33 residues at the N-terminus were truncated to construct mutant M4N-33. The half-life of M4N-33 at 55 °C increased by 120 times compared to that of Laga-ISΔ138-702, and the relative activity of M4N-33 increased up to 152% at the optimal pH and temperature (pH 5.5 and 60 °C). Molecular dynamics (MD) simulations illustrated the decreased b-factor of the surface loop of M4N-33.


Asunto(s)
Inulina , Estabilidad de Enzimas , Cinética , Simulación de Dinámica Molecular , Ingeniería de Proteínas , Temperatura
5.
Enzyme Microb Technol ; 149: 109857, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34311894

RESUMEN

Fructansucrases (FSs), including inulosucrase (IS) and levansucrase (LS), are the members of the Glycoside Hydrolase family 68 (GH68) enzymes. IS and LS catalyze the polymerization of the fructosyl moiety from sucrose to inulin- and levan-type fructans, respectively. Lactobacillus-derived FSs have relatively extended N- and C-terminal sequences. However, the functional roles of these sequences in their enzymatic properties and fructan biosynthesis remain largely unknown. Limosilactobacillus reuteri (basionym: Lactobacillus reuteri) 121 could produce both IS and LS, abbreviated as Lare121-IS and Lare121-LS, respectively. In this study, it was found that the terminal truncation displayed an obvious effect on their activities and the N-terminal truncated variants, Lare121-ISΔ177-701 and Lare121-LSΔ154-686, displayed the highest activities. Melting temperature (Tm) and the thermostability at 50 °C were measured to evaluate the stability of various truncated versions, revealing the different effects of N-terminal on the stability. The average molecular weight and polymerization degree of the fructans produced by different truncated variants did not change considerably, indicating that N-terminal truncation had low influence on fructan biosynthesis. In addition, it was found that N-terminal truncation could also improve the activity of other reported FSs from Lactobacillus species.


Asunto(s)
Lactobacillus , Limosilactobacillus reuteri , Catálisis , Lactobacillus/genética , Limosilactobacillus reuteri/genética , Peso Molecular , Sacarosa
6.
Microorganisms ; 9(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918392

RESUMEN

Fructans are fructose-based (poly)saccharides with inulin and levan being the best-known ones. Thanks to their health-related benefits, inulin-type fructans have been under the focus of scientific and industrial communities, though mostly represented by plant-based inulins, and rarely by microbial ones. Recently, it was discovered that some extremely halophilic Archaea are also able to synthesize fructans. Here, we describe the first in-depth functional and molecular characterization of an Archaeal inulosucrase from Halomicrobium sp. IBSBa (HmcIsc). The HmcIsc enzyme was recombinantly expressed and purified in Escherichia coli and shown to synthesize inulin as proven by nuclear magnetic resonance (NMR) analysis. In accordance with the halophilic lifestyle of its native host, the enzyme showed maximum activity at very high NaCl concentrations (3.5 M), with specific adaptations for that purpose. Phylogenetic analyses suggested that Archaeal inulosucrases have been acquired from halophilic bacilli through horizontal gene transfer, with a HX(H/F)T motif evolving further into a HXHT motif, together with a unique D residue creating the onset of a specific alternative acceptor binding groove. This work uncovers a novel area in fructan research, highlighting unexplored aspects of life in hypersaline habitats, and raising questions about the general physiological relevance of inulosucrases and their products in nature.

7.
Carbohydr Polym ; 220: 149-156, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31196534

RESUMEN

Fructans are fructose-based oligo- and polysaccharides derived from sucrose that occur in a plethora of Eubacteria and plants. While fructan-producing (fructanogenic) Eubacteria are abundant in hypersaline environments, fructan production by Archaea has never been reported before. Exopolysaccharides accumulated by various Archaea from the Halobacteria class (belonging to the genera of Halomicrobium, Haloferax and Natronococcus) originating from different locations on Earth were structurally characterized as either levans or inulins with varying branching degrees (10%-16%). Thus, we show for the first time in the literature that fructans are produced in all three domains of life, including Archaea. This proof of concept will not only provide insight into Archaeal glycans and evolution but it may also open new frontiers for innovative strategies to overcome the ever-increasing threat of excessive salinization.


Asunto(s)
Fructanos , Halobacteriaceae , Inulina , Lagos/microbiología , Evolución Molecular , Fructanos/química , Fructanos/metabolismo , Halobacteriaceae/clasificación , Halobacteriaceae/metabolismo , Inulina/química , Inulina/metabolismo , Salinidad , Turquía , Microbiología del Agua
8.
Appl Microbiol Biotechnol ; 102(21): 9207-9220, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30120521

RESUMEN

Fructans, homopolymers of fructose produced by fructosyltransferases (FTs), are emerging as intriguing components in halophiles since they are thought to be associated with osmotic stress tolerance and overall fitness of microorganisms and plants under high-salinity conditions. Here, we report on the full characterization of the first halophilic FT, a levansucrase from Halomonas smyrnensis AAD6T (HsLsc; EC 2.4.1.10). The encoding gene (lsc) was cloned into a vector with a 6xHis Tag at its C-terminus, then expressed in Escherichia coli. The purified recombinant enzyme (47.3 kDa) produces levan and a wide variety of fructooligosaccharides from sucrose, but only in the presence of high salt concentrations (> 1.5 M NaCl). HsLsc showed Hill kinetics and pH and temperature optima of 5.9 and 37 °C, respectively. Interestingly, HsLsc was still very active at salt concentrations close to saturation (4.5 M NaCl) and was selectively inhibited by divalent cations. The enzyme showed high potential in producing novel saccharides derived from raffinose as both fructosyl donor and acceptor and cellobiose, lactose, galactose, and ʟ-arabinose as fructosyl acceptors. With its unique biochemical characteristics, HsLsc is an important enzyme for future research and potential industrial applications in a world faced with drought and diminishing freshwater supplies.


Asunto(s)
Halomonas/metabolismo , Hexosiltransferasas/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Fructanos/metabolismo , Fructosa/metabolismo , Cinética , Oligosacáridos/metabolismo , Rafinosa/metabolismo , Alineación de Secuencia , Sacarosa/metabolismo
9.
Biotechnol Adv ; 36(5): 1524-1539, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29935267

RESUMEN

Saline and hypersaline environments make up the largest ecosystem on earth and the organisms living in such water-restricted environments have developed unique ways to cope with high salinity. As such these organisms not only carry significant industrial potential in a world where freshwater supplies are rapidly diminishing, but they also shed light upon the origins and extremes of life. One largely overlooked and potentially important feature of many salt-loving organisms is their ability to produce fructans, fructose polymers widely found in various mesophilic Eubacteria and plants, with potential functions as storage carbohydrates, aiding stress tolerance, and acting as virulence factors or signaling molecules. Intriguingly, within the whole archaeal domain of life, Archaea possessing putative fructan biosynthetic enzymes were found to belong to the extremely halophilic class of Halobacteria only, indicating a strong, yet unexplored link between the fructan syndrome and salinity. In fact, this link may indeed lead to novel strategies in fighting the global salinization problem. Hence this review explores the unknown world of fructanogenic salt-loving organisms, where water scarcity is the main stress factor for life. Within this scope, prokaryotes and plants of the saline world are discussed in detail, with special emphasis on their salt adaptation mechanisms, the potential roles of fructans and fructosyltransferase enzymes in adaptation and survival as well as future aspects for all fructanogenic salt-loving domains of life.


Asunto(s)
Fructanos , Halobacteriales , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Fructanos/química , Fructanos/metabolismo , Halobacteriales/química , Halobacteriales/enzimología , Halobacteriales/fisiología , Hexosiltransferasas , Salinidad , Plantas Tolerantes a la Sal/química , Plantas Tolerantes a la Sal/enzimología , Plantas Tolerantes a la Sal/fisiología , Cloruro de Sodio
10.
Bioprocess Biosyst Eng ; 41(9): 1247-1259, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29774415

RESUMEN

Levan polysaccharide is an industrially important natural polymer with unique properties and diverse high-value applications. However, current bottlenecks associated with its large-scale production need to be overcome by innovative approaches leading to economically viable processes. Besides many mesophilic levan producers, halophilic Halomonas smyrnensis cultures hold distinctive industrial potential and, for the first time with this study, the advantage of halophilicity is used and conditions for non-sterile levan production were optimized. Levan productivity of Halomonas cultures in medium containing industrial sucrose from sugar beet and food industry by-product syrup, a total of ten sea, lake and rock salt samples from four natural salterns, as well as three different industrial-grade boron compounds were compared and the most suitable low-cost substitutes for sucrose, salt and boron were specified. Then, the effects of pH control, non-sterile conditions and different bioreactor modes (batch and fed-batch) were investigated. The development of a cost-effective production process was achieved with the highest yield (18.06 g/L) reported so far on this microbial system, as well as the highest theoretical bioconversion efficiency ever reported for levan-producing suspension cultures. Structural integrity and biocompatibility of the final product were also verified in vitro.


Asunto(s)
Fructanos/química , Fructanos/aislamiento & purificación , Halomonas/química , Reactores Biológicos , Halomonas/crecimiento & desarrollo
11.
Plant Cell Environ ; 41(1): 16-38, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28925070

RESUMEN

Fructans are multifunctional fructose-based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so-called "fructan syndrome," is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.


Asunto(s)
Bacterias/metabolismo , Evolución Biológica , Fructanos/metabolismo , Plantas/metabolismo , Enzimas/metabolismo , Fructanos/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...