Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Nat Biotechnol ; 39(4): 499-509, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33169036

RESUMEN

The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.


Asunto(s)
Archaea/genética , Bacterias/genética , Metabolómica/métodos , Metagenoma , Metagenómica/métodos , Virus/genética , Microbiología del Aire , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Catálogos como Asunto , Ecosistema , Humanos , Filogenia , Microbiología del Suelo , Virus/aislamiento & purificación , Microbiología del Agua
4.
PeerJ ; 7: e7359, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31388474

RESUMEN

We previously reported on MetaBAT, an automated metagenome binning software tool to reconstruct single genomes from microbial communities for subsequent analyses of uncultivated microbial species. MetaBAT has become one of the most popular binning tools largely due to its computational efficiency and ease of use, especially in binning experiments with a large number of samples and a large assembly. MetaBAT requires users to choose parameters to fine-tune its sensitivity and specificity. If those parameters are not chosen properly, binning accuracy can suffer, especially on assemblies of poor quality. Here, we developed MetaBAT 2 to overcome this problem. MetaBAT 2 uses a new adaptive binning algorithm to eliminate manual parameter tuning. We also performed extensive software engineering optimization to increase both computational and memory efficiency. Comparing MetaBAT 2 to alternative software tools on over 100 real world metagenome assemblies shows superior accuracy and computing speed. Binning a typical metagenome assembly takes only a few minutes on a single commodity workstation. We therefore recommend the community adopts MetaBAT 2 for their metagenome binning experiments. MetaBAT 2 is open source software and available at https://bitbucket.org/berkeleylab/metabat.

5.
Nucleic Acids Res ; 47(D1): D666-D677, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30289528

RESUMEN

The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE's Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG's web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.


Asunto(s)
Manejo de Datos/métodos , Bases de Datos Genéticas , Genómica/métodos , Metagenoma , Microbiota , Programas Informáticos , Anotación de Secuencia Molecular/métodos , Alineación de Secuencia/métodos
6.
Environ Microbiol ; 17(12): 4965-78, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26279186

RESUMEN

Genes associated with elevated oxidative enzyme activities in arid systems have not been well characterized. To link measured oxidative activities with specific enzymes, we assembled protein-coding reads from the rhizospheres (RHZ) of two arid land grasses. Targeted gene scans for open reading frames, encoding genes potentially involved in lignin modification, resulted in 127 distinct assembly products. The putative genes included those significantly similar to Class II secretory fungal peroxidases. These genes are expressed at sufficiently high levels for assembly, annotation and differentiation across experimental conditions, and they demonstrate the interplay of root systems, environment and plant microbiomes. The genes assembled also included copper-dependent lytic polysaccharide monooxygenases. We detail the enzymes in the host grass RHZs and present a preliminary taxonomic microhabitat characterization. Our findings provide support for biologically mediated Fenton chemistry in the root zones of desert grasses, and provide insight into arid land carbon flow. These results also demonstrate a hyperdiverse microbial community. Both ribosomal RNA and messenger RNA sequences were dominated by bacteria, followed by fungal sequence abundance. Among the notable fungal sequences were those from the members of the arbuscular mycorrhizal fungi (Glomeromycota), which though abundant in this study, we rarely observed in previous PCR-based surveys.


Asunto(s)
Bacterias/genética , Glomeromycota/genética , Lignina/metabolismo , Micorrizas/metabolismo , Raíces de Plantas/microbiología , Poaceae/microbiología , Rizosfera , Bacterias/aislamiento & purificación , Glomeromycota/aislamiento & purificación , Micorrizas/genética , Oxidación-Reducción , Microbiología del Suelo
7.
Front Microbiol ; 6: 771, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300854

RESUMEN

Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6-V8, and V7-V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as well as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. Beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.

8.
PLoS One ; 8(4): e61126, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593407

RESUMEN

Termites effectively feed on many types of lignocellulose assisted by their gut microbial symbionts. To better understand the microbial decomposition of biomass with varied chemical profiles, it is important to determine whether termites harbor different microbial symbionts with specialized functionalities geared toward different feeding regimens. In this study, we compared the microbiota in the hindgut paunch of Amitermes wheeleri collected from cow dung and Nasutitermes corniger feeding on sound wood by 16S rRNA pyrotag, comparative metagenomic and metatranscriptomic analyses. We found that Firmicutes and Spirochaetes were the most abundant phyla in A. wheeleri, in contrast to N. corniger where Spirochaetes and Fibrobacteres dominated. Despite this community divergence, a convergence was observed for functions essential to termite biology including hydrolytic enzymes, homoacetogenesis and cell motility and chemotaxis. Overrepresented functions in A. wheeleri relative to N. corniger microbiota included hemicellulose breakdown and fixed-nitrogen utilization. By contrast, glycoside hydrolases attacking celluloses and nitrogen fixation genes were overrepresented in N. corniger microbiota. These observations are consistent with dietary differences in carbohydrate composition and nutrient contents, but may also reflect the phylogenetic difference between the hosts.


Asunto(s)
Heces/parasitología , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Isópteros/microbiología , Metagenoma/genética , Metagenómica , Madera/parasitología , Animales , Bacterias/genética , Bacterias/metabolismo , Bovinos , Pared Celular/metabolismo , Quimiotaxis/genética , Conducta Alimentaria , Glicósido Hidrolasas/metabolismo , Isópteros/enzimología , Isópteros/genética , Lignina/metabolismo , Nitrógeno/metabolismo , Filogenia , Células Vegetales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Comput Biol Chem ; 33(3): 224-30, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19477687

RESUMEN

Recently, 454 Life Sciences Corporation proposed a new biochemical approach to DNA sequencing (the 454 sequencing). It is based on the pyrosequencing protocol. The 454 sequencing aims to give reliable output at a low cost and in a short time. The produced sequences are shorter than reads produced by classical methods. Our paper proposes a new DNA assembly algorithm which deals well with such data and outperforms other assembly algorithms used in practice. The constructed SR-ASM algorithm is a heuristic method based on a graph model, the graph being a modified DNA graph proposed for DNA sequencing by hybridization procedure. Other new features of the assembly algorithm are, among others, temporary compression of input sequences, and a new and fast multiple alignment heuristics taking advantage of the way the output data for the 454 sequencing are presented and coded. The usefulness of the algorithm has been proved in tests on raw data generated during sequencing of the whole 1.84Mbp genome of Prochlorococcus marinus bacteria and also on a part of chromosome 15 of Homo sapiens. The source code of SR-ASM can be downloaded from http://bio.cs.put.poznan.pl/ in the section 'Current research'--> 'DNA Assembly'. Among publicly available assemblers our algorithm appeared to generate the best results, especially in the number of produced contigs and in the lengths of the contigs with high similarity to the genome sequence.


Asunto(s)
Algoritmos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Cromosomas Humanos Par 15 , Genoma , Humanos , Prochlorococcus/genética
10.
Nature ; 450(7169): 560-5, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-18033299

RESUMEN

From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.


Asunto(s)
Bacterias/metabolismo , Genoma Bacteriano/genética , Genómica , Intestinos/microbiología , Isópteros/metabolismo , Isópteros/microbiología , Madera/metabolismo , Animales , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Fuentes de Energía Bioeléctrica , Carbono/metabolismo , Dominio Catalítico , Celulosa/metabolismo , Costa Rica , Genes Bacterianos/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Lignina/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Simbiosis , Madera/química , Xilanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...