Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 22(4): 1535-1546, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31319015

RESUMEN

Although many fungi are known to be able to perform bioweathering of rocks and minerals, little information is available concerning the role of basidiomycetes in this process. The wood-rotting basidiomycete Schizophyllum commune was investigated for its ability to degrade black slate, a rock rich in organic carbon. Mechanical pressure of hyphae and extracellular polymeric substances was investigated for biophysical weathering. A mixed ß1-3/ß1-6 glucan, likely schizophyllan that is well known from S. commune, could be identified on black slate surfaces. Secretion of siderophores and organic acids as biochemical weathering agents was shown. Both may contribute to biochemical weathering in addition to enzymatic functions. Previously, the exoenzyme laccase was believed to attack organic the matter within the black slate, thereby releasing metals from the rock. Here, overexpression of laccase showed enhanced dissolution of quartz phases by etching and pitting. At the same time, the formation of a new secondary mineral phase, whewellite, could be demonstrated. Hence, a more comprehensive understanding of biophysical as well as biochemical weathering by S. commune could be reached and unexpected mechanisms like quartz dissolution linked to shale degradation.


Asunto(s)
Minerales/química , Schizophyllum/metabolismo , Ácidos/química , Ácidos/metabolismo , Lacasa/química , Lacasa/metabolismo , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Presión , Sideróforos/química , Sideróforos/metabolismo
2.
Environ Sci Pollut Res Int ; 26(1): 5-13, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29943246

RESUMEN

Schizophyllum commune is a filamentous basidiomycete which can degrade complex organic macromolecules like lignin by the secretion of a large repertoire of enzymes. One of these white rot enzymes, laccase, exhibits a broad substrate specificity and is able to oxidize a variety of substances including carbonaceous rocks. To investigate the role of laccase in bioweathering, laccase gene lcc2 was overexpressed, and the influence on weathering of black slate, originating from a former alum mine in Schmiedefeld, Germany, was examined. The metal release from the rock material was enhanced, associated with a partial metal accumulation into the mycelium. A sequestration of metals could be shown with fluorescent staining methods, and an accumulation of Zn, Cd, and Pb was visualized in different cell organelles. Additionally, we could show an increased metal resistance of the laccase overexpressing strain.


Asunto(s)
Lacasa/metabolismo , Metales Pesados/análisis , Minerales/química , Schizophyllum/enzimología , Biodegradación Ambiental , Expresión Génica , Alemania , Lacasa/genética , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Minería , Micelio/metabolismo , Schizophyllum/efectos de los fármacos , Schizophyllum/genética
3.
Front Microbiol ; 9: 2545, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405590

RESUMEN

Schizophyllum commune is a filamentous basidiomycete causing white-rot in many wood species with the help of a broad range of enzymes including multicopper oxidases such as laccases and laccase-like oxidases. Since these enzymes exhibit a broad substrate range, their ability to oxidatively degrade black slate was investigated. Both haploid monokaryotic, and mated dikaryotic strains were able to grow on black slate rich in organic carbon as sole carbon source. On defined media, only the monokaryon showed growth promotion by addition of slate. At the same time, metals were released from the slate and, after reaching a threshold concentration, inhibited further growth of the fungus. The proteome during decomposition of the black slate showed induction of proteins potentially involved in rock degradation and stress resistance, and the gene for laccase-like oxidase mco2 was up-regulated. Specifically in the dikaryon, the laccase gene lcc1 was induced, while lcc2 as well as mco1, mco3, and mco4 expression levels remained similar. Spectrophotometric analysis revealed that both life forms were able to degrade the rock and produce smaller particles.

4.
Adv Appl Microbiol ; 99: 83-101, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28438269

RESUMEN

Many enzymes, such as laccases, are involved in the saprotrophic lifestyle of fungi and the effects of those may be linked to enhanced bioweathering on stone surfaces. To test this hypothesis, we studied the decomposition of kerogen-enriched lithologies, especially with black slate containing up to 20% of Corg. Indeed, a formation of ditches with attached hyphal material could be observed. To address enzymes involved, proteomics was performed and one group of enzymes, the multicopper oxidase family members of laccases, was specifically investigated. A role in bioweathering of rocks containing high contents of organic carbon in the form of kerogen could be shown using the basidiomycete Schizophyllum commune, a white rot fungus that has been used as a model organism to study the role of filamentous basidiomycete fungi in bioweathering of black slate.


Asunto(s)
Proteínas Fúngicas/metabolismo , Sedimentos Geológicos/microbiología , Lacasa/metabolismo , Schizophyllum/enzimología , Proteínas Fúngicas/genética , Sedimentos Geológicos/química , Lacasa/genética , Schizophyllum/genética , Schizophyllum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA