Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurochem Int ; 142: 104920, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238153

RESUMEN

The immunohistochemical pattern of kynurenine aminotransferase-2 (KAT-2) - the key role enzyme in the production of neuroactive and neuroprotective kynurenic acid (KYNA) - was studied in the cerebellum of mice. It is known from literature that KAT-2 is localized mainly in astrocytes in different parts of the cerebrum. Kynurenine aminotransferase (KAT) activity in the cerebellum is relatively low and alternative production routes for KYNA have been described there. Therefore we examined the immunohistochemical pattern of KAT-2 in this part of the brain. Surprisingly, the cellular localization of KAT-2 in mice was proven to be unique; it localized characteristically in Purkinje cells and in some other types of neurons (not identified) but was not found in astrocytes nor microglia. The exclusive neuronal, but not glial localization of KAT-2 in the cerebellum is novel and may be related to its low activity and to the alternative pathways for KYNA production that have been described.


Asunto(s)
Cerebelo/citología , Cerebelo/enzimología , Neuronas/enzimología , Transaminasas/metabolismo , Animales , Cerebelo/química , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Células de Purkinje/química , Células de Purkinje/enzimología , Especificidad de la Especie , Transaminasas/análisis
2.
Brain Res Bull ; 146: 185-191, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30639278

RESUMEN

Manipulation of kynurenic acid (KYNA) level through kynurenine aminotransferase-2 (KAT-2) inhibition with the aim of therapy in neuro-psychiatric diseses has been the subject of extensive recent research. Although mouse models are of particular importance, neither the basic mechanism of KYNA production and release nor the relevance of KAT-2 in the mouse brain has yet been clarified. Using acute mouse brain slice preparations, we investigated the basal and L-kynurenine (L-KYN) induced KYNA production and distribution between the extracellular and intracellular compartments. Furthermore, we evaluated the effect of specific KAT-2 inhibition with the irreversible inhibitor PF-04859989. To ascertain that the observed KYNA release is not a simple consequence of general cell degradation, we examined the structural and functional integrity of the brain tissue with biochemical, histological and electrophysiological tools. We did not find relevant change in the viability of the brain tissue after several hours incubation time. HPLC measurements proved that mouse brain slices intensively produce and liberate KYNA to the extracellular compartment, while only a small proportion retained in the tissue both in the basal and L-KYN supplemented state. Finally, specific KAT-2 inhibition significantly reduced the extracellular KYNA content. Taken together, these results provide important data about KYNA production and release, and in vitro evidence for the first time of the function of KAT-2 in the adult mouse brain. Our study extends investigations of KAT-2 manipulation to mice in a bid to fully understand the function; the final, future aim is to assign therapeutical kynurenergic manipulation strategies to humans.


Asunto(s)
Encéfalo/metabolismo , Ácido Quinurénico/metabolismo , Transaminasas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Inmunohistoquímica/métodos , Ácido Quinurénico/farmacología , Quinurenina/metabolismo , Quinurenina/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Transaminasas/antagonistas & inhibidores
3.
Microvasc Res ; 114: 19-25, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28546077

RESUMEN

The kynurenine pathway is a cascade of enzymatic steps generating biologically active compounds. l-kynurenine (l-KYN) is a central metabolite of tryptophan degradation. In the mammalian brain, l-KYN is partly converted to kynurenic acid (KYNA), which exerts multiple effects on neurotransmission. Recently, l-KYN or one of its derivatives were attributed a direct role in the regulation of the systemic circulation. l-KYN dilates arterial blood vessels during sepsis in rats, while it increases cerebral blood flow (CBF) in awake rabbits. Therefore, we hypothesized that acute elevation of systemic l-KYN concentration may exert potential effects on mean arterial blood pressure (MABP) and on resting CBF in the mouse brain. C57Bl/6 male mice were anesthetized with isoflurane, and MABP was monitored in the femoral artery, while CBF was assessed through the intact parietal bone with the aid of laser speckle contrast imaging. l-KYN sulfate (l-KYNs) (300mg/kg, i.p.) or vehicle was administered intraperitoneally. Subsequently, MABP and CBF were continuously monitored for 2.5h. In the control group, MABP and CBF were stable (69±4mmHg and 100±5%, respectively) throughout the entire data acquisition period. In the l-KYNs-treated group, MABP was similar to that, of control group (73±6mmHg), while hypoperfusion transients of 22±6%, lasting 7±3min occurred in the cerebral cortex over the first 60-120min following drug administration. In conclusion, the systemic high-dose of l-KYNs treatment destabilizes resting CBF by inducing a number of transient hypoperfusion events. This observation indicates the careful consideration of the dose of l-KYN administration by interpreting the effect of kynurenergic manipulation on brain function. By planning clinical trials basing on kynurenergic manipulation possible vascular side effects should also be considered.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular/efectos de los fármacos , Trastornos Cerebrovasculares/inducido químicamente , Quinurenina/toxicidad , Sulfatos/toxicidad , Animales , Presión Arterial , Velocidad del Flujo Sanguíneo , Trastornos Cerebrovasculares/fisiopatología , Inyecciones Intraperitoneales , Quinurenina/administración & dosificación , Quinurenina/análogos & derivados , Flujometría por Láser-Doppler , Masculino , Ratones Endogámicos C57BL , Sulfatos/administración & dosificación , Factores de Tiempo
4.
Brain Struct Funct ; 222(4): 1663-1672, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27568378

RESUMEN

During catabolism of tryptophan through the kynurenine (KYN) pathway, several endogenous metabolites with neuromodulatory properties are produced, of which kynurenic acid (KYNA) is one of the highest significance. The causal role of altered KYNA production has been described in several neurodegenerative and neuropsychiatric disorders (e.g., Parkinson's disease, Huntington's disease, schizophrenia) and therefore kynurenergic manipulation with the aim of therapy has recently been proposed. Conventionally, KYNA is produced from its precursor L-KYN with the aid of the astrocytic kynurenine aminotransferase-2 (KAT-2) in the murine brain. Although the mouse is a standard therapeutic research organism, the presence of KAT-2 in mice has not been described in detail. This study demonstrates the presence of kat-2 mRNA and protein throughout the adult C57Bl6 mouse brain. In addition to the former expression data from the rat, we found prominent KAT-2 expression not only in the astrocyte, but also in neurons in several brain regions (e.g., hippocampus, substantia nigra, striatum, and prefrontal cortex). A significant number of the KAT-2 positive neurons were positive for GAD67; the presence of the KAT-2 enzyme we could also demonstrate in mice brain homogenate and in cells overexpressing recombinant mouse KAT-2 protein. This new finding attributes a new role to interneuron-derived KYNA in neuronal network operation. Furthermore, our results suggest that the thorough investigation of the spatio-temporal expression pattern of the relevant enzymes of the KYN pathway is a prerequisite for developing and understanding the pharmacological and transgenic murine models of kynurenergic manipulation.


Asunto(s)
Astrocitos/enzimología , Encéfalo/enzimología , Transaminasas/análisis , Animales , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/análisis
5.
Neuroscience ; 332: 203-11, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27378558

RESUMEN

Hypoxic circumstances result in functional and structural impairments of the brain. Oxygen-glucose deprivation (OGD) on hippocampal slices is a technique widely used to investigate the consequences of ischemic stroke and the potential neuroprotective effects of different drugs. Acetyl-l-carnitine (ALC) is a naturally occurring substance in the body, and it can therefore be administered safely even in relatively high doses. In previous experiments, ALC pretreatment proved to be effective against global hypoperfusion. In the present study, we investigated whether ALC can be protective in an OGD model. We are not aware of any earlier study in which the long-term potentiation (LTP) function on hippocampal slices was measured after OGD. Therefore, we set out to determine whether an effective ALC concentration has an effect on synaptic plasticity after OGD in the hippocampal CA1 subfield of rats. A further aim was to investigate the mechanism underlying the protective effect of this compound. The experiments revealed that ALC is neuroprotective against OGD in a dose-dependent manner, which is manifested not only in the regeneration of the impaired synaptic transmission after the OGD, but also in the inducibility and stability of the LTP. In the case of the most effective concentration of ALC (500µM), use of a phosphoinositide 3-kinase (PI3K) inhibitor (LY294002) revealed that the PI3K/Akt signaling pathway has a key role in the restoration of the synaptic transmission and plasticity reached by ALC treatment.


Asunto(s)
Acetilcarnitina/farmacología , Isquemia Encefálica/tratamiento farmacológico , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Glucosa/deficiencia , Potenciación a Largo Plazo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/fisiopatología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiopatología , Cromonas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Técnicas de Cultivo de Tejidos
6.
Front Behav Neurosci ; 9: 157, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26136670

RESUMEN

L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.

7.
Rev Sci Instrum ; 86(12): 123104, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26724003

RESUMEN

We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.

8.
Neuropathol Appl Neurobiol ; 40(5): 603-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23795719

RESUMEN

AIMS: Brain ischaemia models are essential to study the pathomechanisms of stroke. Our aim was to investigate the reliability and reproducibility of our novel focal ischaemia-reperfusion model. METHODS: To induce a cortical transient ischaemic attack, we lifted the distal middle cerebral artery (MCA) with a special hook. The early changes after 2 × 15-min occlusion were observed in the somatosensory evoked responses (SERs). The histological responses to 2 × 15-min MCA occlusion and to 30-, 45- or 60-min ischaemia were examined after a 1-day survival period by 2,3,5-triphenyltetrazolium chloride (TTC) and Fluoro Jade C (FJC) staining. Another group, with 30-min ischaemia, was analysed histologically by FJC, S100 and CD11b labelling after a 5-day survival period. RESULTS: The amplitudes of the SERs decreased immediately at the beginning of the ischaemic period, and remained at a reduced level during the ischaemia. Reperfusion resulted in increasing SER amplitudes, but they never regained the control level. The short-lasting ischaemia did not lead to brain infarction when evaluated with TTC, but intense labelling was found with FJC. The 30-min ischaemia did not result in FJC labelling after 1 day, but marked labelling was observed after 5 days with FJC, S100 and CD11b in the cortical area supplied by the MCA. CONCLUSIONS: We present here a novel, readily reproducible method to induce focal brain ischaemia. The ischaemia-reperfusion results in noteworthy changes in the SERs and the appearance of conventional tissue damage markers. This method involves possibilities for precise blood flow regulation, and the setting of the required level of perfusion.


Asunto(s)
Isquemia Encefálica/etiología , Modelos Animales de Enfermedad , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Estimulación Eléctrica , Potenciales Evocados Somatosensoriales , Infarto de la Arteria Cerebral Media , Masculino , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Corteza Somatosensorial/patología , Corteza Somatosensorial/fisiopatología
9.
Drug Des Devel Ther ; 7: 981-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068867

RESUMEN

Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood-brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Depresión de Propagación Cortical/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Ácido Quinurénico/farmacología , Animales , Electroencefalografía , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Ácido Quinurénico/administración & dosificación , Masculino , Microscopía Fluorescente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/fisiopatología , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
10.
J Neural Transm (Vienna) ; 119(2): 165-72, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21818601

RESUMEN

The neuroactive properties and neuroprotective potential of endogenous L: -kynurenine, kynurenic acid (KYNA) and its derivatives are well established. KYNA acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. Unfortunately, KYNA is barely able to cross the blood-brain barrier. Accordingly, the development and synthesis of KYNA analogs which can readily cross the BBB have been at the focus of research interest with the aim of neuroprotection. Earlier we reported a new KYNA-amide crosses the BBB and proved neuroprotective in several experiments. In the present study, we investigated the locomotor activity, working memory performance, and also the long-lasting, consolidated reference memory of animals treated intraperitoneally (i.p.) with the novel analog. The effects of the novel analog on the spatial orientation and learning ability of rats were assessed in the Morris water maze (MWM) paradigm. The effects on locomotor activity of mice was assessed in the open field (OF) paradigm, and those on the spatial orientation and learning ability of mice were investigated in the radial arm maze (RAM) paradigm. It emerged that there is a dose of this KYNA-amide which is neuroprotective, but does not worsen the cognitive function of the brain. This result is significant in that a putative neuroprotectant without adverse cognitive side-effects is of great benefit.


Asunto(s)
Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Amidas/síntesis química , Amidas/farmacología , Animales , Ácido Quinurénico/síntesis química , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Actividad Motora/fisiología , Fármacos Neuroprotectores/síntesis química , Ratas , Ratas Wistar
11.
Neuropharmacology ; 61(5-6): 1026-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21781978

RESUMEN

Postconditioning can be induced by a broad range of stimuli within minutes to days after an ischemic cerebral insult. A special form is elicited by pharmacological intervention called second pathophysiological stress. The present study aimed to evaluate the effects of low-dose (5 mg/kg) kainate postconditioning with onsets 0, 24 and 48 h after the ischemic insult on the hippocampal synaptic plasticity in a 2-vessel occlusion model in rat. The hippocampal function was tested by LTP measurements of Schaffer collateral-CA1 pyramidal cell synapses in acute slices and the changes in density of Golgi-Cox-stained apical dendritic spines. Postconditioning 0 and 24 h after ischemia was not protective, whereas 48-h-onset postconditioning resulted in the reappearance of a normal spine density (>100,000 spines) 3 days after ischemia, in parallel with the long-term restoration of the damaged LTP function. Similar, but somewhat less effects were observed after 10 days. Our data clearly demonstrate the onset dependence of postconditioning elicited by a subconvulsant dose of kainate treatment in global ischemia, with restoration of the structural plasticity and hippocampal function.


Asunto(s)
Región CA1 Hipocampal/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Kaínico/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Animales , Región CA1 Hipocampal/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Electroencefalografía , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Ataque Isquémico Transitorio/mortalidad , Ataque Isquémico Transitorio/fisiopatología , Potenciación a Largo Plazo/fisiología , Masculino , Terapia Molecular Dirigida , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología
12.
Eur J Pharmacol ; 667(1-3): 182-7, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21664350

RESUMEN

Global forebrain ischemia results in damage to the pyramids in the CA1 hippocampal subfield, which is particularly vulnerable to excitotoxic processes. Morphological and functional disintegration of this area leads to a cognitive dysfunction and neuropsychiatric disorders. Treatment with N-methyl-d-aspartate receptor antagonists is a widely accepted method with which to stop the advance of excitotoxic processes and concomitant neuronal death. From a clinical aspect, competitive glycine- and polyamine-site antagonists with relatively low affinity and moderate side-effects are taken into account. Endogenous kynurenic acid acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. In the present study, we estimated the neuroprotective capability of a novel kynurenic acid analog in transient global forebrain ischemia, measuring the rate of hippocampal CA1 pyramidal cell loss and the preservation of long-term potentiation at Schaffer collateral-CA1 synapses. The neuroprotective potential was reflected by a significantly diminished hippocampal CA1 cell loss and preserved long-term potentiation expression. The neuroprotective effect was robust in the event of pretreatment, and also when the drug was administered at the time of reperfusion. This result is beneficial since a putative neuroprotectant proven to be effective as post-treatment is of much greater benefit.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Arterias Carótidas/cirugía , Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Recuento de Células , Modelos Animales de Enfermedad , Estimulación Eléctrica , Técnicas In Vitro , Ácido Quinurénico/uso terapéutico , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
13.
Cell Mol Neurobiol ; 30(7): 1101-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20607387

RESUMEN

It is well known that traumatic or ischemic brain injury is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) in brain fluids. It has recently been demonstrated that excess Glu can be eliminated from brain into blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to intravenous OxAc administration (i.v., 12.5, 25, and 50 mg/kg, respectively), and studied its effects on somatosensory evoked cortical potentials (EPs). Against our expectation, the amplitudes of EPs did not decrease but increased in a dose- and time-dependent manner after OxAc administration. Similar effects were observed when blood Glu scavenging was enhanced by combining OxAc (12.5 mg/kgbw) with recombinant glutamate-oxaloacetate transaminase (GOT, 0.14 nmol/100 g rat). On the basis of these results, we suggest that the changes of amplitudes of the EPs involve not only a glutamatergic but also the weakening of a GABAergic component. We cannot rule out the possibility that OxAc penetrates into the brain and improves mitochondrial functions.


Asunto(s)
Encéfalo/metabolismo , Potenciales Evocados Somatosensoriales/fisiología , Ácido Glutámico/sangre , Animales , Aspartato Aminotransferasa Citoplasmática/metabolismo , Encéfalo/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Concentración de Iones de Hidrógeno , Masculino , Ácido Oxaloacético/farmacología , Ratas , Ratas Wistar
14.
J Neural Transm (Vienna) ; 117(2): 183-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19953278

RESUMEN

Kynurenic acid is an endogenous product of the tryptophan metabolism, and as a broad-spectrum antagonist of excitatory amino acid receptors may serve as a protective agent in neurological disorders. The use of kynurenic acid as a neuroprotective agent is rather limited, however, because it has only restricted ability to cross the blood-brain barrier. Accordingly, new kynurenic acid analogues which can readily cross the blood-brain barrier and exert their complex anti-excitotoxic activity are greatly needed. Such a novel analogue, 2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-one hydrochloride, has been developed and tested. In an in vitro electrophysiological study, in which its properties were compared with those of kynurenic acid, the new analogue behaved quite similarly to kynurenic acid: in the micromolar range, its administration led to a decrease in the amplitudes of the field excitatory postsynaptic potentials in the CA1 region of the hippocampus, while in nanomolar concentrations it did not give rise to inhibition, but, in fact, facilitated the field excitatory postsynaptic potentials. Moreover, the new analogue demonstrated similar protective action against PTZ-induced facilitation to that observed after kynurenic acid administration. The findings strongly suggest that the neuroactive effects of the new analogue are comparable with those of kynurenic acid, but, in contrast with kynurenic acid, it readily crosses the blood-brain barrier. The new analogue may therefore be considered a promising candidate for clinical studies.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Región CA1 Hipocampal/fisiología , Relación Dosis-Respuesta a Droga , Potenciales Evocados/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/química , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Ácido Quinurénico/química , Microelectrodos , Inhibición Neural/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo
15.
Cell Mol Neurobiol ; 29(6-7): 827-35, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19259807

RESUMEN

A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.


Asunto(s)
Infarto Cerebral/tratamiento farmacológico , Potenciales Evocados Somatosensoriales/fisiología , Ácido Oxaloacético/uso terapéutico , Corteza Somatosensorial/patología , Corteza Somatosensorial/fisiopatología , Animales , Infarto Cerebral/inducido químicamente , Infarto Cerebral/patología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Fluoresceínas , Masculino , Compuestos Orgánicos , Ratas , Rosa Bengala/toxicidad , Corteza Somatosensorial/irrigación sanguínea
16.
Eur J Pharmacol ; 604(1-3): 51-7, 2009 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-19135048

RESUMEN

Various acute brain pathological conditions are characterized by the presence of elevated glutamate concentrations in the brain interstitial fluids. It has been established that a decrease in the blood glutamate level enhances the brain-to-blood efflux of glutamate, removal of which from the brain may prevent glutamate excitotoxicity and its contribution to the long-lasting neurological deficits seen in stroke. A decrease in blood glutamate level can be achieved by exploiting the glutamate-scavenging properties of the blood-resident enzyme glutamate-oxaloacetate transaminase, which transforms glutamate into 2-ketoglutarate in the presence of the glutamate co-substrate oxaloacetate. The present study had the aim of an evaluation of the effects of the blood glutamate scavenger oxaloacetate on the impaired long-term potentiation (LTP) induced in the 2-vessel occlusion ischaemic model in rat. Transient (30-min) incomplete forebrain ischaemia was produced 72 h before LTP induction. Although the short transient brain hypoperfusion did not induce histologically identifiable injuries in the CA1 region (Fluoro-Jade B, S-100 and cresyl violet), it resulted in an impaired LTP function in the hippocampal CA1 region without damaging the basal synaptic transmission between the Schaffer collaterals and the pyramidal neurons. This impairment could be fended off in a dose-dependent manner by the intravenous administration of oxaloacetate in saline (at doses between 1.5 mmol and 0.1 mumol) immediately after the transient hypoperfusion. Our results suggest that oxaloacetate-mediated blood and brain glutamate scavenging contributes to the restoration of the LTP after its impairment by brain ischaemia.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Ataque Isquémico Transitorio/prevención & control , Potenciación a Largo Plazo/efectos de los fármacos , Ácido Oxaloacético/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Arterias Carótidas/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/sangre , Hipocampo/patología , Hipocampo/fisiopatología , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Masculino , Ratas , Ratas Wistar
17.
Neurobiol Dis ; 32(2): 302-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18761090

RESUMEN

The neuroprotective effect of L-kynurenine sulfate (KYN), a precursor of kynurenic acid (KYNA, a selective N-methyl-D-aspartate receptor antagonist), was studied. KYN (300 mg/kg i.p., applied daily for 5 days) appreciably decreased the number of injured pyramidal cells from 1850+/-100/mm(2) to 1000+/-300/mm(2) (p<0.001) in the CA1 region of the hippocampus in the four-vessel occlusion (4VO)-induced ischemic adult rat brain. A parallel increase in the number of intact, surviving neurons was demonstrated. Post-treatment with KYN (applied immediately right after reperfusion) proved to be much less effective. In parallel with the histology, a protective effect of KYN on the functioning of the CA1 region was observed: long-term potentiation was abolished in the 4VO animals, but its level and duration were restored by pretreatment with KYN. It is concluded that the administration of KYN elevates the KYNA concentration in the brain to neuroprotective levels, suggesting its potential clinical usefulness for the prevention of neuronal loss in neurodegenerative diseases.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Quinurenina/uso terapéutico , Adyuvantes Farmacéuticos/uso terapéutico , Animales , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Hipocampo/metabolismo , Técnicas In Vitro , Ácido Quinurénico/metabolismo , Quinurenina/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Técnicas de Placa-Clamp , Fosfopiruvato Hidratasa/metabolismo , Probenecid/uso terapéutico , Ratas , Ratas Wistar
18.
Acta Neurobiol Exp (Wars) ; 67(2): 149-54, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17691222

RESUMEN

A focal cold lesion-induced injury, i.e., a model of focal vasogenic brain edema, enhances the permeability of the blood-brain barrier and cell membrane in the perilesional rim. However, non-intact cells can be detected, e.g. by markers of apoptosis, only hours or even days after the injury. The early membrane dysfunction allows extravasated serum proteins to enter the injured cells, which can be readily visualized if the plasma albumin was previously bound to fluorescent tracers, such as Evans Blue (EB). The aim of this study was to demonstrate injured cells that take up the EB/albumin conjugate in the perilesional rim. This tracer was administered 3.5 h after the induction of the injury and the animals were sacrificed 30 min later. With an excitation wavelength of 530-550 nm, the EB-positive cells emitted bright-red fluorescence at > 590 nm and were easy to count. No positive cells were observed in the controls. This method provides more information than the classical 2,3,5-triphenyltetrazolium chloride reaction, because it permits an assessment of the density and distribution of cells with non-intact cell membranes in the perilesional area following cerebrocortical injury.


Asunto(s)
Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Frío/efectos adversos , Azul de Evans , Neuronas/patología , Animales , Modelos Animales de Enfermedad , Ratas , Ratas Wistar , Sales de Tetrazolio
19.
J Neurovirol ; 12(3): 161-70, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16877297

RESUMEN

Herpes simplex virus (HSV) is known to replicate within the limbic system and to alter behavior in both humans and experimental animals. However, the reason why the virus selectively damages this anatomical, developmental, and functional neural unit remains a mystery. Nor is it known why herpes simplex encephalitis fails to respect these neuroanatomical boundaries in newborns. In the present study, the authors determined the spatiotemporal changes in the distribution of the major neural entry receptor for HSV (nectin-1) in postnatal mouse and rat brains. Discrete nectin-1 immunopositivity was observed in regions susceptible to HSV infection in specific developmental phases of central nervous system. The authors also describe nectin-1-related pathways controlling neuronal cell migration/brain morphogenesis, the disruption of which might lead to the emergence of mental disorders with a rapid cognitive decline.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo , Encefalitis por Herpes Simple/metabolismo , Receptores Virales/metabolismo , Simplexvirus/metabolismo , Factores de Edad , Animales , Encéfalo/citología , División Celular , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Cuerpo Calloso/citología , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/metabolismo , Susceptibilidad a Enfermedades , Femenino , Inmunohistoquímica , Sistema Límbico/citología , Sistema Límbico/crecimiento & desarrollo , Sistema Límbico/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Nectinas , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Embarazo , Ácidos Siálicos/metabolismo
20.
Cell Mol Neurobiol ; 26(7-8): 1505-19, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16758322

RESUMEN

1. Dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are sex hormone precursors which exert marked neurotrophic and/or neuroprotective activity in the central nervous system (CNS). 2. In the present electrophysiological experiments, we studied the effects of peripherally administered DHEAS on responses of the primary somatosensory (SSI) and motor cortices (MI) of (i) anesthetized controls and (ii) MI focal cold-lesioned rats. (iii) The effects of DHEAS on the field excitatory postsynaptic potentials (fEPSPs) were also studied in vitro brain slices. DHEAS (50 mg/kg) was injected subcutaneously 12 h before and immediately after cold lesion induction. The anesthetized rats were fixed in a stereotaxic frame, the SSI and MI were exposed, and control SSI and MI responses were evoked by contralateral whisker pad stimulation. After registration of the evoked responses for a 35-min period, a copper cylinder (2 mm in diameter) cooled with a mixture of acetone and dry ice (-78 degrees C) was applied to produce a lesion in the MI and the registration of the evoked responses was then continued for an additional 360 min. 3. In the controls, DHEAS administration resulted in slight increases in amplitude of both the SSI and the MI responses. After focal cold lesion induction, the most significant reduction in amplitude was observed at the focus of the lesion in the primary MI, but the amplitudes of the SSI responses were also decreased. After 3-5 h of lesion induction, the amplitudes started to increase around the injury in the primary MI, while the SSI response had already started to recover 2 h after induction of the MI lesion. In the course of the postlesion recovery period, the MI responses peripherally to the center of the lesion frequently exhibited extremely high and low amplitudes. The paired-pulse paradigm revealed changing, but basically high levels of disinhibition and facilitation in extended cortical areas after focal cortical cold lesion induction. The deviations (e.g., the extremely augmented responses) in cortical functioning of the anesthetized rats were unambiguously diminished by DHEAS administration, and the period required for the cortical responses to recover was significantly shorter after the steroid treatment. In the in vitro studies, however, DHEAS administration resulted in an enhanced level of disinhibition in extended cortical areas of both the hemispheres. 4. This observation draws attention to the possible differences between the results obtained in different models (in vitro vs. in situ). Nevertheless, all the presented data suggest that DHEAS treatment might have neuroprotective effect on the neocortex at least at a short-time scale.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Sulfato de Deshidroepiandrosterona/farmacología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Animales , Lesiones Encefálicas/tratamiento farmacológico , Sulfato de Deshidroepiandrosterona/administración & dosificación , Evaluación Preclínica de Medicamentos , Inyecciones Subcutáneas , Masculino , Modelos Biológicos , Corteza Motora/fisiología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Corteza Somatosensorial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...