Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 34(43)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37494895

RESUMEN

In this study, the growth behavior of Indium gallium nitride (InGaN)-based nanocolumn arrays was investigated, and red emission nanocolumn micro-light emitting diodes (µ-LEDs) were fabricated. The internal structure of the InGaN/GaN superlattice (SL) layer under the multiple-quantum-well (MQW) active layers was evaluated using scanning transmission electron microscopy (STEM) analysis. It was revealed that the InGaN crystal plane at the top of the nanocolumn changed from the c-plane, (1-102) plane, to the (10-11) plane as the number of SL pairs increased. A semipolar (10-11) plane was completely formed on top of the nanocolumn by growing InGaN/GaN SLs over 15-20 pairs, where the InGaN/GaN SL layers were uniformly piled up, maintaining the (10-11) plane. Therefore, when InGaN/AlGaN MQWs were grown on the (10-11) plane InGaN/GaN SL layer, the growth of the (10-11) plane semipolar InGaN active layers was observed in the high-angle annular dark field (HAADF)-STEM image. Moreover, the acute nanocolumn top of the (10-11) plane of the InGaN/GaN SL underlayer did not contribute to the formation of the c-plane InGaN core region. Red nanocolumnµ-LEDs with anφ12µm emission window were fabricated using the (10-11) plane MQWs to obtain the external quantum efficiency of 1.01% at 51 A cm-2. The process of nanocolumnµ-LEDs suitable for the smaller emission windows was provided, where the flat p-GaN contact layer contributed to forming a fine emission window ofφ5µm.

2.
Sci Rep ; 12(1): 10348, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725743

RESUMEN

The measurements of photoexcited transport in mesoscopic regimes reveal the states and properties of mesoscopic systems. In this study, we focused on direct measurements of electromagnetic energy transports in the mesoscopic regions and constructed a scanning tunnelling microscope-assisted multi-probe scanning near-field optical microscope spectroscopy system. After producing an emission energy map through a single-probe measurement, two-probe measurement enables us to observe and analyse carrier transport characteristics. It suggests that exciton generation and transport in the mesoscopic region of semiconductors with quantum structure changes, such as the bias of dopant, affect the excited carrier emission recombination process. The measured probability density of the carrier transported with quantum effects can be used for applications in natural intelligence research by combining it with the analysis using tournament structures. Our developed measurement and analysis methods are expected to clarify the details of carrier's behaviour in the mesoscopic region in various materials and lead to applications for novel optoelectronic devices.

3.
Sci Rep ; 10(1): 853, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964934

RESUMEN

GaN nanocolumns were synthesized on single-layer graphene via radio-frequency plasma-assisted molecular beam epitaxy, using a thin migration-enhanced epitaxy (MEE) AlN buffer layer as nucleation sites. Due to the weak nucleation on graphene, instead of an AlN thin-film we observe two distinguished AlN formations which affect the subsequent GaN nanocolumn growth: (i) AlN islands and (ii) AlN nanostructures grown along line defects (grain boundaries or wrinkles) of graphene. Structure (i) leads to the formation of vertical GaN nanocolumns regardless of the number of AlN MEE cycles, whereas (ii) can result in random orientation of the nanocolumns depending on the AlN morphology. Additionally, there is a limited amount of direct GaN nucleation on graphene, which induces non-vertical GaN nanocolumn growth. The GaN nanocolumn samples were characterized by means of scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffraction, room temperature micro-photoluminescence, and micro-Raman measurements. Surprisingly, the graphene with AlN buffer layer formed using less MEE cycles, thus resulting in lower AlN coverage, has a lower level of nitrogen plasma damage. The AlN buffer layer with lowest AlN coverage also provides the best result with respect to high-quality and vertically-aligned GaN nanocolumns.

4.
Nano Lett ; 19(3): 1649-1658, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30702300

RESUMEN

The many outstanding properties of graphene have impressed and intrigued scientists for the last few decades. Its transparency to light of all wavelengths combined with a low sheet resistance makes it a promising electrode material for novel optoelectronics. So far, no one has utilized graphene as both the substrate and transparent electrode of a functional optoelectronic device. Here, we demonstrate the use of double-layer graphene as a growth substrate and transparent conductive electrode for an ultraviolet light-emitting diode in a flip-chip configuration, where GaN/AlGaN nanocolumns are grown as the light-emitting structure using plasma-assisted molecular beam epitaxy. Although the sheet resistance is increased after nanocolumn growth compared with pristine double-layer graphene, our experiments show that the double-layer graphene functions adequately as an electrode. The GaN/AlGaN nanocolumns are found to exhibit a high crystal quality with no observable defects or stacking faults. Room-temperature electroluminescence measurements show a GaN related near bandgap emission peak at 365 nm and no defect-related yellow emission.

5.
Nanotechnology ; 30(1): 015604, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30375368

RESUMEN

We report on the self-assembled growth of high-density and vertically-oriented n-doped GaN nanocolumns on graphene by radio-frequency plasma-assisted molecular beam epitaxy. Graphene was transferred to silica glass, which was used as the substrate carrier. Using a migration enhanced epitaxy grown AlN buffer layer for the nucleation is found to enable a high density of vertical GaN nanocolumns with c-axis growth orientation on graphene. Furthermore, micro-Raman spectroscopy indicates that the AlN buffer reduces damage on the graphene caused by impinging active N species generated by the radio-frequency plasma source during the initial growth stage and nucleation of GaN. In addition, the grown GaN nanocolumns on graphene are found to be virtually stress-free. Micro-photoluminescence measurements show near band-edge emission from wurtzite GaN, exhibiting higher GaN bandgap related photoluminescence intensity relative to a reference GaN bulk substrate and the absence of both yellow luminescence and excitonic defect emission. Transmission electron microscopy reveals the interface of GaN nanocolumns on graphene via a thin AlN buffer layer. Even though the first few monolayers of AlN on top of graphene are strained due to in-plane lattice mismatch between AlN and graphene, the grown GaN nanocolumns have a wurtzite crystal structure without observable defects. The results of this initial work pave the way towards realizing low-cost and high-performance electronic and optoelectronic devices based on III-N semiconductors grown on graphene.

6.
Appl Opt ; 56(12): 3589-3593, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28430238

RESUMEN

AlGaN microdisks were fabricated via a top-down process using electron-beam lithography, inductively coupled plasma reactive-ion etching, and hydrogen-environment thermal etching from commercial epitaxial wafers with a 100-300 nm thick AlGaN layer grown on a c-plane GaN layer by metal-organic chemical vapor deposition. The hydrogen-environment thermal etching performed well in undercutting the AlGaN microdisks owing to the selective etching for the GaN layer. The AlGaN microdisks acted as the whispering gallery mode (WGM) optical microresonators, exhibiting sharp resonant peaks in room temperature photoluminescence spectra. The evanescent component of the whispering gallery mode (WGM) is influenced by the ambient condition of the microdisk, resulting in the shift of the resonant peaks. The phenomenon is considered to be used for microsensors. Using the WGM in the AlGaN microdisks, we demonstrated microsensors and a microsensor system, which can potentially be used to evaluate biological and chemical actions in a microscale area in real time.

7.
Nanotechnology ; 27(5): 055302, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26674458

RESUMEN

We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

8.
Opt Lett ; 40(12): 2866-9, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26076282

RESUMEN

Using room temperature photoluminescence measurements, we have demonstrated a sensing operation based on hexagonal GaN microdisks with a side length of approximately 1.5 µm that acted as optical microcavities. In the experiment, the optical microresonant systems based on the whispering-gallery mode (WGM) in the microdisks were affected by their ambient conditions, resulting in shifts of the lasing wavelength by varying the mixing ratios of isopropanol and o-xylene. We also obtained such shifts for aqueous solutions with varying sucrose concentrations. In addition, we demonstrated that tiny waterborne particles can be detected using a microdisk. These results indicate that the WGM in the hexagonal GaN microdisks potentially can be used to develop optical microbiosensors that can evaluate a limited area with a radius of 1-2 µm.


Asunto(s)
Técnicas Biosensibles/instrumentación , Galio , Microtecnología/instrumentación , Dispositivos Ópticos
9.
Nanotechnology ; 26(22): 225602, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25965011

RESUMEN

The growth of highly uniform arrays of GaN nanocolumns with diameters from 122 to 430 nm on Si (111) substrates was demonstrated. The employment of GaN film templates with flat surfaces (root mean square surface roughness of 0.84 nm), which were obtained using an AlN/GaN superlattice (SL) buffer on Si, contributed to the high-quality selective-area growth of nanocolumns using a thin Ti mask of 5 nm thickness by rf-plasma-assisted molecular beam epitaxy. Although the GaN template included a large number of dislocations (dislocation density ∼10(11) cm(-2)), the dislocation filtering effect of nanocolumns was enhanced with decreasing nanocolumn diameters (D). Systematic transmission electron microscopy (TEM) observation enabled us to explain the dependence of the dislocation propagation behavior in nanocolumns on the nanocolumn diameter for the first time. Plan-view TEM analysis was performed for nanocolumns with D = 120-324 nm by slicing the nanocolumns horizontally at a height of ∼300 nm above their bottoms and dislocation propagation through the nanocolumns was analyzed by the cross-sectional TEM observation of nanocolumns with D âˆ¼ 200 nm. It was clarified that dislocations were effectively filtered in the bottom 300 nm region of the nanocolumns, the dislocation density of the nanocolumns decreased with decreasing D, and for narrow nanocolumns with D < 200 nm, dislocation-free crystals were obtained in the upper part of the nanocolumns. The dramatic improvement in the emission properties of GaN nanocolumns observed with decreasing diameter is discussed in relation to the decreased dislocation density. The laser action of InGaN/GaN-based nanocolumn arrays with a nanocolumn diameter of 170 nm and a period of 200 nm on Si under optical excitation was obtained with an emission wavelength of 407 nm. We also fabricated red-emitting InGaN-based nanocolumn light-emitting diodes on Si that operated at a wavelength of 652 nm, demonstrating vertical conduction through the AlN/GaN SL buffer to the Si substrate.

10.
Rev Sci Instrum ; 82(5): 053905, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21639516

RESUMEN

We propose an array of submicrometer mirrors to assess luminescent nano-objects. Micromirror arrays (MMAs) are fabricated on Si (001) wafers via selectively doping Ga using the focused ion beam technique to form p-type etch stop regions, subsequent anisotropic chemical etching, and Al deposition. MMAs provide two benefits: reflection of luminescence from nano-objects within MMAs toward the Si (001) surface normal and nano-object labeling. The former increases the probability of optics collecting luminescence and is demonstrated by simulations based on the ray-tracing and finite-difference time-domain methods as well as by experiments. The latter enables different measurements to be repeatedly performed on a single nano-object located at a certain micromirror. For example, a single InGaN∕GaN nanocolumn is assessed by scanning electron microscopy and microphotoluminescence spectroscopy.

11.
Opt Express ; 17(22): 20440-7, 2009 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-19997272

RESUMEN

Two-dimensional (2D) light diffraction in a uniform array of GaN nanocolumns arranged in a rectangular lattice dramatically enhanced the light intensity at a specific wavelength, indicating the function of 2D distributed feedback (DFB). Here a GaN rectangular-lattice nanocolumn array, which integrated InGaN/GaN multiple quantum wells (MQWs) in the top region of the nanocolumns, was grown by rf-plasma-assisted molecular beam epitaxy (rf-MBE). At a specific wavelength of 471.1 nm, the first observation of stimulated emission from 2D-DFB in an InGaN-based nanocolumn array was obtained. The specific wavelength is calculated by the 2D finite-difference time domain (2D-FDTD) method on the assumption of a refractive index dispersion of GaN; a simple expression for specific wavelength, which is a function of the array period L and the hexagon side length S of each nanocolumn, is proposed, which is convenient for producing a simple design of a GaN nanocolumn array structure in a square lattice.


Asunto(s)
Color , Galio/química , Indio/química , Rayos Láser , Iluminación/instrumentación , Nanoestructuras/química , Nanotecnología/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Nanoestructuras/ultraestructura , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA