Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 44(36): 12041-8, 2005 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-16142901

RESUMEN

The topa quinone (TPQ) cofactor of copper amine oxidase is generated by copper-assisted self-processing of the precursor protein. Metal ion specificity for TPQ biogenesis has been reinvestigated with the recombinant phenylethylamine oxidase from Arthrobacter globiformis. Besides Cu2+ ion, some divalent metal ions such as Co2+, Ni2+, and Zn2+ were also bound to the metal site of the apoenzyme so tightly that they were not replaced by excess Cu2+ ions added subsequently. Although these noncupric metal ions could not initiate TPQ formation under the atmospheric conditions, we observed slow spectral changes in the enzyme bound with Co2+ or Ni2+ ion under the dioxygen-saturating conditions. Resonance Raman spectroscopy and titration with phenylhydrazine provided unambiguous evidence for TPQ formation by Co2+ and Ni2+ ions. Steady-state kinetic analysis showed that the enzymes activated by Co2+ and Ni2+ ions were indistinguishable from the corresponding metal-substituted enzymes prepared from the native copper enzyme (Kishishita, S., Okajima, T., Kim, M., Yamaguchi, H., Hirota, S., Suzuki, S., Kuroda, S., Tanizawa, K., and Mure, M. (2003) J. Am. Chem. Soc. 125, 1041-1055). X-ray crystallographic analysis has also revealed structural identity of the active sites of Co- and Ni-activated enzymes with Cu-enzyme. Thus Cu2+ ion is not the sole metal ion assisting TPQ formation. Co2+ and Ni2+ ions are also capable of forming TPQ, though much less efficiently than Cu2+.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/química , Amina Oxidasa (conteniendo Cobre)/metabolismo , Arthrobacter/enzimología , Benzoquinonas/metabolismo , Metales Pesados/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Iones/química , Iones/metabolismo , Metales Pesados/química , Análisis Espectral
2.
J Am Chem Soc ; 125(4): 1041-55, 2003 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-12537504

RESUMEN

The role of the active site Cu(2+) of phenylethylamine oxidase from Arthrobacter globiformis (AGAO) has been studied by substitution with other divalent cations, where we were able to remove >99.5% of Cu(2+) from the active site. The enzymes reconstituted with Co(2+) and Ni(2+) (Co- and Ni-AGAO) exhibited 2.2 and 0.9% activities, respectively, of the original Cu(2+)-enzyme (Cu-AGAO), but their K(m) values for amine substrate and dioxygen were comparable. X-ray crystal structures of the Co- and Ni-AGAO were solved at 2.0-1.8 A resolution. These structures revealed changes in the metal coordination environment when compared to that of Cu-AGAO. However, the hydrogen-bonding network around the active site involving metal-coordinating and noncoordinating water molecules was preserved. Upon anaerobic mixing of the Cu-, Co-, and Ni-AGAO with amine substrate, the 480 nm absorption band characteristic of the oxidized form of the topaquinone cofactor (TPQ(ox)) disappeared rapidly (< 6 ms), yielding the aminoresorcinol form of the reduced cofactor (TPQ(amr)). In contrast to the substrate-reduced Cu-AGAO, the semiquinone radical (TPQ(sq)) was not detected in Co- and Ni-AGAO. Further, in the latter, TPQ(amr) reacted reversibly with the product aldehyde to form a species with a lambda(max) at around 350 nm that was assigned as the neutral form of the product Schiff base (TPQ(pim)). Introduction of dioxygen to the substrate-reduced Co- and Ni-AGAO resulted in the formation of a TPQ-related intermediate absorbing at around 360 nm, which was assigned to the neutral iminoquinone form of the 2e(-)-oxidized cofactor (TPQ(imq)) and which decayed concomitantly with the generation of TPQ(ox). The rate of TPQ(imq) formation and its subsequent decay in Co- and Ni-AGAO was slow when compared to those of the corresponding reactions in Cu-AGAO. The low catalytic activities of the metal-substituted enzymes are due to the impaired efficiencies of the oxidative half-reaction in the catalytic cycle of amine oxidation. On the basis of these results, we propose that the native Cu(2+) ion has essential roles such as catalyzing the electron transfer between TPQ(amr) and dioxygen, in part by providing a binding site for 1e(-)- and 2e(-)-reduced dioxygen species to be efficiently protonated and released and also preventing the back reaction between the product aldehyde and TPQ(amr).


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/química , Cobalto/química , Cobre/química , Níquel/química , Amina Oxidasa (conteniendo Cobre)/metabolismo , Arthrobacter/enzimología , Cobalto/metabolismo , Cobre/metabolismo , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Níquel/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA