Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Jpn J Radiol ; 42(6): 599-611, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351253

RESUMEN

PURPOSE: Liver and pancreatic fibrosis is associated with diabetes mellitus (DM), and liver fibrosis is associated with pancreatic fibrosis. This study aimed to investigate the relationship between the hepatic and pancreatic extracellular volume fractions (fECVs), which correlate with tissue fibrosis, and their relationships with DM and pre-DM (pDM). MATERIAL AND METHODS: We included 100 consecutive patients with known or suspected liver and/or pancreatic diseases who underwent contrast-enhanced CT. Patients were classified as nondiabetes, pDM, and DM with hemoglobin A1c (HbA1c) levels of < 5.7%, 5.7%-6.5%, and ≥ 6.5% or fasting plasma glucose (FPG) levels of < 100, 100-125 mg/dL, and ≥ 126 mg/dL, respectively. Subtraction images between unenhanced and equilibrium-phase images were prepared. The liver and the pancreas were automatically extracted using a high-speed, three-dimensional image analysis system, and their respective mean CT values were calculated. The enhancement degree of the aorta (Δaorta) was measured. fECV was calculated using the following equation: fECV = (100 - hematocrit) * Δliver or pancreas/Δaorta. Differences were investigated in hepatic and pancreatic fECVs among the three groups, and the correlation between each two in hepatic fECV, pancreatic fECV, and HbA1c was determined. RESULTS: The pancreatic fECV, which was positively correlated with the hepatic fECV and HbA1c (r = 0.51, P < 0.001, and r = 0.51, P < 0.001, respectively), significantly differed among the three groups (P < 0.001) and was significantly greater in DM than in pDM or nondiabetes and in pDM with nondiabetes (P < 0.001). Hepatic fECV was significantly greater in DM than in nondiabetes (P < 0.05). CONCLUSION: The pancreatic fECV and pDM/DM are closely related.


Asunto(s)
Medios de Contraste , Hígado , Estado Prediabético , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Anciano , Hígado/diagnóstico por imagen , Estado Prediabético/diagnóstico por imagen , Páncreas/diagnóstico por imagen , Páncreas/patología , Adulto , Diabetes Mellitus/diagnóstico por imagen , Anciano de 80 o más Años , Imagenología Tridimensional/métodos , Cirrosis Hepática/diagnóstico por imagen , Estudios Retrospectivos
2.
Magn Reson Med Sci ; 23(2): 214-224, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36990740

RESUMEN

PURPOSE: To compare the effects of deep learning reconstruction (DLR) on respiratory-triggered T2-weighted MRI of the liver between single-shot fast spin-echo (SSFSE) and fast spin-echo (FSE) sequences. METHODS: Respiratory-triggered fat-suppressed liver T2-weighted MRI was obtained with the FSE and SSFSE sequences at the same spatial resolution in 55 patients. Conventional reconstruction (CR) and DLR were applied to each sequence, and the SNR and liver-to-lesion contrast were measured on FSE-CR, FSE-DLR, SSFSE-CR, and SSFSE-DLR images. Image quality was independently assessed by three radiologists. The results of the qualitative and quantitative analyses were compared among the four types of images using repeated-measures analysis of variance or Friedman's test for normally and non-normally distributed data, respectively, and a visual grading characteristics (VGC) analysis was performed to evaluate the image quality improvement by DLR on the FSE and SSFSE sequences. RESULTS: The liver SNR was lowest on SSFSE-CR and highest on FSE-DLR and SSFSE-DLR (P < 0.01). The liver-to-lesion contrast did not differ significantly among the four types of images. Qualitatively, noise scores were worst on SSFSE-CR but best on SSFSE-DLR because DLR significantly reduced noise (P < 0.01). In contrast, artifact scores were worst both on FSE-CR and FSE-DLR (P < 0.01) because DLR did not reduce the artifacts. Lesion conspicuity was significantly improved by DLR compared with CR in the SSFSE (P < 0.01) but not in FSE sequences for all readers. Overall image quality was significantly improved by DLR compared with CR for all readers in the SSFSE (P < 0.01) but only one reader in the FSE (P < 0.01). The mean area under the VGC curve values for the FSE-DLR and SSFSE-DLR sequences were 0.65 and 0.94, respectively. CONCLUSION: In liver T2-weighted MRI, DLR produced more marked improvements in image quality in SSFSE than in FSE.


Asunto(s)
Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Hepáticas/patología , Artefactos
3.
Invest Radiol ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975732

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the impact of ultra-high-resolution acquisition and deep learning reconstruction (DLR) on the image quality and diagnostic performance of T2-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) imaging of the rectum. MATERIALS AND METHODS: This prospective study included 34 patients who underwent magnetic resonance imaging (MRI) for initial staging or restaging of rectal tumors. The following 4 types of oblique axial PROPELLER images perpendicular to the tumor were obtained: a standard 3-mm slice thickness with conventional reconstruction (3-CR) and DLR (3-DLR), and 1.2-mm slice thickness with CR (1.2-CR) and DLR (1.2-DLR). Three radiologists independently evaluated the image quality and tumor extent by using a 5-point scoring system. Diagnostic accuracy was evaluated in 22 patients with rectal cancer who underwent surgery after MRI without additional neoadjuvant therapy (median interval between MRI and surgery, 22 days). The signal-to-noise ratio and tissue contrast were measured on the 4 types of PROPELLER imaging. RESULTS: 1.2-DLR imaging showed the best sharpness, overall image quality, and rectal and lesion conspicuity for all readers (P < 0.01). Of the assigned scores for tumor extent, extramural venous invasion (EMVI) scores showed moderate agreement across the 4 types of PROPELLER sequences in all readers (intraclass correlation coefficient, 0.60-0.71). Compared with 3-CR imaging, the number of cases with MRI-detected extramural tumor spread was significantly higher with 1.2-DLR imaging (19.0 ± 2.9 vs 23.3 ± 0.9, P = 0.03), and the number of cases with MRI-detected EMVI was significantly increased with 1.2-CR, 3-DLR, and 1.2-DLR imaging (8.0 ± 0.0 vs 9.7 ± 0.5, 11.0 ± 2.2, and 12.3 ± 1.7, respectively; P = 0.02). For the diagnosis of histopathologic extramural tumor spread, 3-CR and 1.2-CR had significantly higher specificity than 3-DLR and 1.2-DLR imaging (0.75 and 0.78 vs 0.64 and 0.58, respectively; P = 0.02), and only 1.2-CR had significantly higher accuracy than 3-CR imaging (0.83 vs 0.79, P = 0.01). The accuracy of MRI-detected EMVI with reference to pathological EMVI was significantly lower for 3-CR and 3-DLR compared with 1.2-CR (0.77 and 0.74 vs 0.85, respectively; P < 0.01), and was not significantly different between 1.2-CR and 1.2-DLR (0.85 vs 0.80). Using any pathological venous invasion as the reference standard, the accuracy of MRI-detected EMVI was significantly the highest with 1.2-DLR, followed by 1.2-CR, 3-CR, and 3-DLR (0.71 vs 0.67 vs 0.59 vs 0.56, respectively; P < 0.01). The signal-to-noise ratio was significantly highest with 3-DLR imaging (P < 0.05). There were no significant differences in tumor-to-muscle contrast between the 4 types of PROPELLER imaging. CONCLUSIONS: Ultra-high-resolution PROPELLER T2-weighted imaging of the rectum combined with DLR improved image quality, increased the number of cases with MRI-detected extramural tumor spread and EMVI, but did not improve diagnostic accuracy with respect to pathology in rectal cancer, possibly because of false-positive MRI findings or false-negative pathologic findings.

4.
Magn Reson Med Sci ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37899224

RESUMEN

PURPOSE: To compare objective and subjective image quality, lesion conspicuity, and apparent diffusion coefficient (ADC) of high-resolution multiplexed sensitivity-encoding diffusion-weighted imaging (MUSE-DWI) with conventional DWI (c-DWI) and reduced FOV DWI (rFOV-DWI) in prostate MRI. METHODS: Forty-seven patients who underwent prostate MRI, including c-DWI, rFOV-DWI, and MUSE-DWI, were retrospectively evaluated. SNR and ADC of normal prostate tissue and contrast-to-noise ratio (CNR) and ADC of prostate cancer (PCa) were measured and compared between the three sequences. Image quality and lesion conspicuity were independently graded by two radiologists using a 5-point scale and compared between the three sequences. RESULTS: The SNR of normal prostate tissue was significantly higher with rFOV-DWI than with the other two DWI techniques (P ≤ 0.01). The CNR of the PCa was significantly higher with rFOV-DWI than with MUSE-DWI (P < 0.05). The ADC of normal prostate tissue measured by rFOV-DWI was lower than that measured by MUSE-DWI and c-DWI (P < 0.01), while there was no difference in the ADC of cancers. In the qualitative analysis, MUSE-DWI showed significantly higher scores than rFOV-DWI and c-DWI for visibility of anatomy and overall image quality in both readers, and significantly higher scores for distortion in one of the two readers (P < 0.001). There was no difference in lesion conspicuity between the three sequences. CONCLUSION: High-resolution MUSE-DWI showed higher image quality and reduced distortion compared to c-DWI, while maintaining a wide FOV and similar ADC quantification, although no difference in lesion conspicuity was observed.

5.
J Comput Assist Tomogr ; 47(5): 698-703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37707398

RESUMEN

OBJECTIVE: To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning-based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. METHODS: Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. RESULTS: Deep learning-based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning-based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). CONCLUSIONS: Deep learning-based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pancreáticas , Humanos , Estudios Retrospectivos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Neoplasias Pancreáticas/diagnóstico por imagen
6.
Radiol Med ; 128(6): 629-643, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37120661

RESUMEN

OBJECTIVES: To compare the image quality of high-resolution diffusion-weighted imaging (DWI) using multiplexed sensitivity encoding (MUSE) versus reduced field-of-view (rFOV) techniques in endometrial cancer (EC) and to compare the diagnostic performance of these techniques with that of dynamic contrast-enhanced (DCE) MRI for assessing myometrial invasion of EC. METHODS: MUSE-DWI and rFOV-DWI were obtained preoperatively in 58 women with EC. Three radiologists assessed the image quality of MUSE-DWI and rFOV-DWI. For 55 women who underwent DCE-MRI, the same radiologists assessed the superficial and deep myometrial invasion using MUSE-DWI, rFOV-DWI, and DCE-MRI. Qualitative scores were compared using the Wilcoxon signed-rank test. Receiver operating characteristic analysis was performed to compare the diagnostic performance. RESULTS: Artifacts, sharpness, lesion conspicuity, and overall quality were significantly better with MUSE-DWI than with rFOV-DWI (p < 0.05). The area under the curve (AUC) of MUSE-DWI, rFOV-DWI, and DCE-MRI for the assessment of myometrial invasion were not significantly different except for significantly higher AUC of MUSE-DWI than that of DCE-MRI for superficial myometrial invasion (0.76 for MUSE-DWI and 0.64 for DCE-MRI, p = 0.049) and for deep myometrial invasion (0.92 for MUSE-DWI and 0.80 for DCE-MRI, p = 0.022) in one observer, and that of rFOV-DWI for deep myometrial invasion in another observer (0.96 for MUSE-DWI and 0.89 for rFOV-MRI, p = 0.048). CONCLUSION: MUSE-DWI exhibits better image quality than rFOV-DWI. MUSE-DWI and rFOV-DWI shows almost equivalent diagnostic performance compared to DCE-MRI for assessing superficial and deep myometrial invasion in EC although MUSE-DWI may be helpful for some radiologists.


Asunto(s)
Alprostadil , Neoplasias Endometriales , Femenino , Humanos , Sensibilidad y Especificidad , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...