Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399803

RESUMEN

'Candidatus Phytoplasma prunorum' is one of the most destructive pathogens of Prunus species, where susceptible species render unproductive several years after infection. In epidemiology, the molecular characterization of phytoplasmas is based on sequence analysis of variable nonribosomal genes. In this study aceF, pnp, imp and secY genes were used for characterization of the 'Ca. P. prunorum' genotypes present in the Czech Republic. In total, 56 plant and 33 vector (Cacopsylla pruni) samples positive to 'Ca. P. prunorum' collected in seven localities were used in the study. Based on sequence analysis, four aceF, two pnp, six imp, and three secY genotypes were identified in analyzed samples. The most abundant in both plant and insect samples were the A6, P2, I4, and S2 genotypes. Most of the Czech 'Ca. P. prunorum' haplotypes clustered together in the haplotype network analysis. Next, two isolates representing the two most abundant Czech haplotypes (A6-P2-I4-S2 and A5-P2-I4-S2) were used in the susceptibility test of three apricot rootstock types (St. Julien A, M-VA-1, GF-305). Susceptibility was analyzed by phytoplasma quantification using quantitative real-time PCR and evaluation of symptom manifestation. Based on the results, the influence of the rootstock type on the phytoplasma titer and symptom manifestation was greater than of the phytoplasma isolate, while the year of analysis had no influence on the results. The results also showed that the phytoplasma titer is increasing in plant tissues during the vegetation period.

2.
Plant Dis ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085239

RESUMEN

Fungal trunk diseases (FTDs) have been a significant threat to the global stone fruit industry. FTDs are caused by a consortium of wood-decaying fungi. These fungi colonize woody tissues, causing cankers, dieback, and other decline-related symptoms in host plants. In this study, a detailed screening of the fungal microbiota associated with the decline of stone fruit trees in the Czech Republic was performed. The wood fragments of plum and apricot trees showing symptoms of FTDs were subjected to fungal isolation. The partial internal transcribed spacer (ITS) region, partial beta-tubulin (tub2) and translation elongation factor 1-α (tef) genes were amplified from genomic DNA extracted from fungal cultures. All isolates were classified, and the taxonomic placement of pathogenic strains was illustrated in phylogenetic trees. The most abundant pathogenic genus was Dactylonectria (31 %), followed by Biscogniauxia (13 %), Thelonectria (10 %), Eutypa (9 %), Dothiorella (7 %), Diplodia (6 %), and Diaporthe (6 %). The most frequent endophytic genus was Aposphaeria (17 %). The pathogenicity of six fungal spp. (Cadophora daguensis, Collophorina africana, Cytospora sorbicola, Dothiorella sarmentorum, Eutypa lata, and Eutypa petrakii var. petrakii to four Prunus spp. was evaluated and the Koch's postulates were fulfilled. All tested isolates caused lesions on at least one Prunus sp. The most aggressive species was E. lata, which caused the largest lesions on all four tested Prunus spp., followed by E. petrakii var. petrakii, and D. sarmentorum. Japanese plum (Prunus salicina) and almond (P. amygdalus) were the most susceptible hosts while apricot (P. armeniaca) was the least susceptible host in the pathogenicity trial.

3.
Genes (Basel) ; 13(2)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35205390

RESUMEN

The use of high-throughput small RNA sequencing is well established as a technique to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be crucial for understanding disease symptom development in humans.


Asunto(s)
MicroARNs/metabolismo , Nasofaringe/metabolismo , SARS-CoV-2/fisiología , COVID-19/patología , COVID-19/virología , Regulación hacia Abajo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/química , Nasofaringe/virología , Análisis de Componente Principal , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de ARN , Transcriptoma , Regulación hacia Arriba
4.
PLoS One ; 15(1): e0227559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31910230

RESUMEN

A multiplex real-time PCR method based on fluorescent TaqMan® probes was developed for the simultaneous detection of the tomato pathogenic bacteria Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and bacterial spot-causing xanthomonads. The specificity of the multiplex assay was validated on 44 bacterial strains, including 32 target pathogen strains as well as closely related species and nontarget tomato pathogenic bacteria. The designed multiplex real-time PCR showed high sensitivity when positive amplification was observed for one pg of bacterial DNA in the cases of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato bacteria and 100 pg for bacterial spot-causing xanthomonads. The reliability of the developed multiplex real-time PCR assay for in planta detection was verified by recognition of the target pathogens in 18 tomato plants artificially inoculated by each of the target bacteria and tomato samples from production greenhouses.


Asunto(s)
Actinobacteria/aislamiento & purificación , Pseudomonas syringae/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Solanum lycopersicum/microbiología , Xanthomonas/aislamiento & purificación , Actinobacteria/genética , Actinobacteria/fisiología , Clavibacter , Ambiente Controlado , Solanum lycopersicum/crecimiento & desarrollo , Pseudomonas syringae/genética , Pseudomonas syringae/fisiología , Xanthomonas/genética , Xanthomonas/fisiología
5.
Genes (Basel) ; 10(11)2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703418

RESUMEN

Diaporthe species are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses. In this study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational methods to predict putative miRNA targets in order to explore the involvement of possible pathogen response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs were revealed. Our results contribute to further understanding the role miRNAs play during plant pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines infected by D. eres and D. bohemiae.


Asunto(s)
Ascomicetos/patogenicidad , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Vitis/genética , MicroARNs/metabolismo , Transcriptoma , Vitis/microbiología
6.
Microb Ecol ; 77(3): 664-675, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30194483

RESUMEN

"Candidatus Phytoplasma prunorum" (CPp) is a highly destructive phytopathogenic agent in many stone fruit-growing regions in Europe and the surrounding countries. In this work, we focused on documenting entire bacterial community in the phloem tissues of 60 stone fruit trees. Nested PCR and two real-time PCR assays were used to select CPp-positive (group A) and CPp-negative samples (group B). Afterwards, high-throughput amplicon sequencing was performed to assess bacterial community compositions in phloem tissues. The bacterial composition in phloem tissue consisted of 118 distinct genera, represented mainly by Pseudomonas, Acinetobacter, Methylobacterium, Sphingomonas, and Rhizobium. Statistics showed that CPp influenced the bacterial composition of infected plants (group A) and that the bacterial community depended on the geographical origin of the sample. This is the first work focusing on an analysis of the influence of CPp on the bacteria coexisting in the phloem tissues of stone fruit trees.


Asunto(s)
Bacterias/aislamiento & purificación , Floema/microbiología , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Prunus/microbiología , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Frutas/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...