Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biota Neotrop. (Online, Ed. ingl.) ; 24(1): e20231574, 2024. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1550073

RESUMEN

Abstract Despite an economy based mostly on agriculture, literature on viral diseases of plants is scarce in Paraguay. Only recently, researches on plant viruses took an impulse resulting in a precise identification of many of them affecting plants either cultivated or not. To provide reliable information regarding plant viruses present in Paraguay, an annotated list of them was prepared, covering descriptions from 1920 to present day. There have been some important outbreaks with severe yield losses in crops as cucurbits, citrus, sesame, bean, maize, peanuts and tomato. Many of older descriptions are included for their historical significance, but most identifications made require confirmation. On the other hand, recent descriptions have been completed, based on several assays, especially molecular characterization. This list is organized alphabetically following scientific names of the plant species found naturally infected by viruses, with comments about symptoms, geographical distribution, incidence, identification procedures, and other information, with due literature references. It is based on a compilation of publications made on plant virus diseases in Paraguay. Described virus species, in a total of 38 recognized by ICTV, belonging to 17 different genera (Alphaendornavirus, Ampelovirus, Begomovirus, Benyvirus, Carlavirus, Cilevirus, Closterovirus, Comovirus, Cucumovirus, Dichorhavirus, Fabavirus, Luteovirus, Ophiovirus, Orthotospovirus, Potexvirus, Potyvirus and Tobamovirus), besides two unclassified, and four unidentified. There is also a case of viroid described in Citrus spp. Infections caused by potyviruses are the most numerous. These viruses were described in more than 40 plant species, belonging to 18 botanical families. Because of crop diversity and richness in native flora, many more viruses must be present in Paraguay, which future works will certainly reveal, especially with the increase in manpower involving researches, especially cooperative with foreign centers, on plant viruses, which has been very limited until now. Also, knowledge on existing viruses may have relevance in understanding their epidemiology and provide the basis for their control strategies and quarantine measures, to avoid new variants of existing viruses or new viruses being introduced.


Resumo A pesar de una economía basada principalmente en la agricultura, la literatura sobre enfermedades virales de las plantas es escasa en Paraguay. Sólo recientemente se han impulsado las investigaciones sobre los virus de plantas, lo que ha permitido identificar con precisión muchos de ellos que afectan a plantas cultivadas o no. Para brindar información confiable sobre los virus de plantas presentes en el Paraguay, se elaboró una lista comentada de los mismos, abarcando descripciones desde 1920 hasta la actualidad. Se han producido algunos focos importantes con severas pérdidas de rendimiento en cultivos de cucurbitáceas, cítricos, sésamo, frijol, maíz, maní y tomate. Muchas de las descripciones más antiguas se incluyen por su importancia histórica, pero la mayoría de las identificaciones realizadas requieren confirmación. Por otro lado, las descripciones recientes han sido completadas, basadas en varios ensayos, especialmente de caracterización molecular. Esta lista está organizada alfabéticamente siguiendo los nombres científicos de las especies de plantas que se encontraron naturalmente infectadas por virus, con comentarios sobre síntomas, distribución geográfica, incidencia, procedimientos de identificación y otras informaciones, con las debidas referencias bibliográficas. Se basa en una recopilación de publicaciones realizadas sobre enfermedades virales de plantas en Paraguay. Especies de virus descritas, en un total de 38 reconocidas por el ICTV, pertenecientes a 17 géneros diferentes (Alphaendornavirus, Ampelovirus, Begomovirus, Benyvirus, Carlavirus, Cilevirus, Closterovirus, Comovirus, Cucumovirus, Dichorhavirus, Fabavirus, Luteovirus, Ophiovirus, Orthotospovirus, Potexvirus, Potyvirus y Tobamovirus), además de dos sin clasificar y cuatro sin identificar. También existe un caso de un viroide descrito en Citrus spp. Las infecciones causadas por potyvirus son las más numerosas. Estos virus fueron descritos en más de 40 especies de plantas, pertenecientes a 18 familias botánicas. Debido a la diversidad de cultivos y la riqueza de la flora nativa, muchos más virus deben estar presentes en Paraguay, lo que seguramente revelarán trabajos futuros, especialmente con el aumento de la mano de obra involucrada en investigaciones, en cooperación con centros extranjeros, sobre virus de plantas, que ha sido muy limitada hasta el momento. Además, el conocimiento sobre los virus existentes puede ser relevante para comprender su epidemiología y proporcionar una base para sus estrategias de control y medidas de cuarentena, para evitar la introducción de nuevas variantes de virus existentes o nuevos virus.

2.
Viruses ; 15(2)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36851755

RESUMEN

Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the potential to encode a protein with 1563 amino acids (aa). However, the structural components of the viral capsid are unknown. To characterize the structural proteins of PMeV and PMeV2, virions were purified from Carica papaya latex. SDS-PAGE analysis of purified virus revealed two major proteins of ~40 kDa and ~55 kDa. Amino-terminal sequencing of the ~55 kDa protein and LC-MS/MS of purified virions indicated that this protein starts at aa 263 of the deduced ORF1 product as a result of either degradation or proteolytic processing. A yeast two-hybrid assay was used to identify Arabidopsis proteins interacting with two PMeV ORF1 product fragments (aa 321-670 and 961-1200). The 50S ribosomal protein L17 (AtRPL17) was identified as potentially associated with modulated translation-related proteins. In plant cells, AtRPL17 co-localized and interacted with the PMeV ORF1 fragments. These findings support the hypothesis that the interaction between PMeV/PMeV2 structural proteins and RPL17 is important for virus-host interactions.


Asunto(s)
Proteínas de la Cápside , Carica , Aminoácidos , Cápside , Proteínas de la Cápside/genética , Cromatografía Liquida , Látex , Espectrometría de Masas en Tándem , Virus ARN/genética
3.
Biomolecules ; 12(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36291572

RESUMEN

Viruses were discovered as agents of disease in the late 19th century, but it was not until the 1930s that the nature of these agents was elucidated. Nevertheless, as soon as viral diseases started to be recognized and cataloged, there were attempts to classify and name viruses. Although these early attempts failed to be adopted by the nascent virology community, they are evidence of the human compulsion to try to organize the natural world into well-defined categories. Different classification schemes were proposed during the 20th century, but again none were widely embraced by virologists. In 1966, with the creation of the International Committee on Nomenclature of Viruses (eventually renamed as the International Committee on Taxonomy of Viruses), a more organized effort led to an official taxonomy in which viruses were classified into families and genera. At present, a much better understanding of the evolutionary relationships among viruses has led to the establishment of a 15-rank taxonomy based primarily on these evolutionary relationships. This review of virus taxonomy will be centered on the tobacco mosaic virus (TMV), the agent of the disease studied by Dmitry Ivanovsky and the first virus to be recognized as such, which was often historically at the center of major advancements in virology during the 20th century.


Asunto(s)
Virus del Mosaico del Tabaco , Virus , Humanos
4.
Front Microbiol ; 13: 836076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418952

RESUMEN

An increasing number of plant species have been recognized or considered likely reservoirs of viruses transmitted by Brevipalpus mites. A tiny fraction of these viruses, primarily those causing severe economic burden to prominent crops, have been fully characterized. In this study, based on high-throughput sequencing, transmission electron microscopy analyses of virions in plant-infected tissues, viral transmission experiments, and the morphoanatomical identification of the involved Brevipalpus mites, we describe molecular and biological features of viruses representing three new tentative species of the family Kitaviridae. The genomes of Solanum violifolium ringspot virus (SvRSV, previously partially characterized), Ligustrum chlorotic spot virus (LigCSV), and Ligustrum leprosis virus (LigLV) have five open reading frames (ORFs) > 500 nts, two distributed in RNA1 and three in RNA2. RNA1 of these three viruses display the same genomic organization found in RNA1 of typical cileviruses, while their RNA2 are shorter, possessing only orthologs of genes p61, p32, and p24. LigCSV and LigLV are more closely related to each other than to SvRSV, but the identities between their genomic RNAs were lower than 70%. In gene-by-gene comparisons, ORFs from LigCSV and LigLV had the highest sequence identity values (nt sequences: 70-76% and deduced amino acid sequences: 74-83%). The next higher identity values were with ORFs from typical cileviruses, with values below 66%. Virions of LigLV (≈ 40 nm × 55 nm) and LigCSV (≈ 54 nm × 66 nm) appear almost spherical, contrasting with the bacilliform shape of SvRSV virions (≈ 47 nm × 101 nm). Mites collected from the virus-infected plants were identified as Brevipalpus papayensis, B. tucuman, and B. obovatus. Viruliferous B. papayensis mites successfully transmitted LigCSV to Arabidopsis thaliana. SvRSV, LigCSV, and LigLV seem to represent novel sub-lineages of kitaviruses that descent on parallel evolutionary branches from a common ancestor shared with the tentative cile-like virus hibiscus yellow blotch virus and typical cileviruses. Biological and molecular data, notably, the phylogenetic reconstruction based on the RdRp proteins in which strong support for monophyly of the family Kitaviridae is observed, mark an advance in the understanding of kitavirids.

5.
Plant Dis ; 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34232058

RESUMEN

Zinnia sp. is a genus belonging to Asteraceae family, originated in Mexico and adapted to a warm-hot climate (Hemmati and Mehrnoosh, 2017). Several types of zinnias with different flower color and forms are cultivated in Brazil (Min et al., 2020 and Souza Jr. et al., 2020). Characteristic symptoms of infection caused by orthotospovirus, including chlorotic spots and concentric rings on the leaves, were observed in two plants of Zinnia sp. of a florist located in the city of Piracicaba, State of São Paulo, Brazil. Orthotospovirus-like particles were observed by transmission electron microscope in leaf extracts from both plants, stained negatively with 1% uranyl acetate. By analyzing ultrathin sections of infected leaf tissues, particles of 80-100 nm in diameter were found in the lumen of the endoplasmic reticulum and nucleocapsid aggregates in the cytoplasm. Total RNA extracted separately from the leaves of both samples, using the Purelink Viral DNA / RNA kit (Thermo Fisher Scientific), was used to detect the virus by reverse transcription polymerase chain reaction (RT-PCR), using the universal primers for orthotospovirus BR60, complementary to the 3' end of the non-translated region of the S RNA (position 1 to 15 nt), and BR65, matching the nucleocapsid gene (N) (position 433 to 453 nt), generating and amplicon of 453 nt (Eiras et al., 2001). Amplicons of the expected size were obtained for the two samples. An amplicon was purified with the Wizard SV Gel and PCR Clean-Up System kit (Promega) and sequenced in both directions at Macrogen Inc (South Korea). The nucleotide sequence (GenBank MW629018) showed 99.29-99.76% identity with nucleotide sequences of the orthotospovirus groundnut ringspot virus (GRSV) isolates (GenBank MH686229 and KY400110). Leaf extracts from symptomatic plants were also analyzed by plate-trapped antigen-enzyme-linked immunosorbent assay (PTA-ELISA), using polyclonal antiserum produced against the GRSV nucleocapsid protein (Esquivel et al., 2019). The absorbance values obtained for the extracts of the two symptomatic plants of Zinnia sp. (1.3 and 1.7) were twice as high as the value obtained for the healthy plant extract (0.5). Leaf extract of symptomatic Zinnia sp. was inoculated mechanically onto leaves of healthy plants of Zinnia sp., Capsicum annuum cv. Dara, Cucumis sativus, Cucurbita pepo cv. Caserta, Chenopodium amaranticolor, Datura stramonium, Nicotiana tabacum cv. Turkish and Solanum lycopersicum cv. Compack. At 5 days post inoculation (dpi), inoculated leaves of D. stramonium reacted with local lesions, and at 9 dpi, newly developed leaves of inoculated S. lycopersicum plants showed necrotic spot and concentric ring symptoms, whereas C. annuum exhibited concentric rings at 10 dpi. Inoculated zinnia plants showed systemic chlorotic spot and concentric ring symptoms at 20 dpi, indistinguishable from those observed under natural infection. The other inoculated plant species were not symptomatic, nor the virus was detected. PTA-ELISA and RT-PCR confirmed infection with GRSV in symptomatic plants. The amplicons generated by RT-PCR of total RNA extracted from an experimentally infected plant of C. annuum and D. stramonium, and two plants of Zinnia sp. were sent for nucleotide sequencing. The obtained nucleotide sequences (MW629019, MW629020, MW629021, MW629022) shares 100% identity with the nucleotide sequence corresponding to the original GRSV isolate (MW629018) identified in Zinnia sp. This is the first report of the natural occurrence of GRSV in Zinnia sp. in Brazil. Studies on incidence and damage are needed to recommend alternatives for management.

6.
Arthropod Struct Dev ; 63: 101057, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34022513

RESUMEN

The genera Daidalotarsonemus De Leon and Excelsotarsonemus Ochoa & Naskrecki are mainly characterized, in the females, by the presence of sculpturing on the dorsal shields and by highly modified dorsal setae, greatly enlarged, laminar or sail-shaped. Moreover, both genera are characterized by abundant cerotegument all over the body and on the modified setae (d, e, f) with the presence of fungi, lichens, and bacteria accumulating. The peculiar morphology of the dorsal setae in these two genera has suggested they might have other functions beside the sensory one. Ultrastructural observations using scanning and transmission electron microscopy techniques revealed that, albeit extravagantly modified, these dorsal setae should act as mechanoreceptors in agreement with most of the previous observations in mites. The morphological modifications of the setae d, e, and f (pronounced cup shape of setae e and enlarged shaft with concave longitudinal strips of setae d and f) suggest they play, in addition to the tactile function, a storage role and dispersive role for fungal spores collected by the mite while moving in the humid environment. Moreover, the modified setae d, e, and f inserted on elevated sockets are probably movable by the action of dorso-ventral muscles; thus, mites might use their sail-shape to become airborne. In addition, the body dorso-ventral muscles observed inserting close to the elevated seta e sockets suggest the mite might also lift these cup-like setae to spread the fungal particles on the body or over adjacent vegetation as well. Biological and feeding studies are necessary to better understand the role such fungi might play in the mite life cycle.


Asunto(s)
Ácaros , Sensilos , Animales , Femenino , Mecanorreceptores , Microscopía Electrónica de Transmisión
7.
Virusdisease ; 32(1): 167-172, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33969160

RESUMEN

For the first time, an isolate of the dichorhavirus orchid fleck virus (OFV, family Rhabdoviridae) was found infecting an orchid plant in Mexico. The infected sample of Epidendrum veroscriptum was collected in a nursery in Lagunillas, municipality of Zihuateutla, Edo. Puebla. Mites gathered on this plant were analyzed by light and scanning electron microscopy, which consistently indicated the presence of adults of the species Brevipalpus californicus, the common vector of OFV. Viral identification was based on symptoms, cytopathology, and reverse transcriptase-PCR/sequencing of genome fragments of the RNA1 and 2 molecules. Since isolates of OFV causing citrus leprosis have been previously detected in the Mexican states of Chiapas, Querétaro, and Jalisco, we promote a pertinent discussion and thought-provoking questions regarding the epidemiology and putative evolution of OFV.

8.
Front Microbiol ; 12: 641252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995302

RESUMEN

Despite the importance of viral strains/variants as agents of emerging diseases, genetic and evolutionary processes affecting their ecology are not fully understood. To get insight into this topic, we assessed the population and spatial dynamic parameters of citrus leprosis virus C (CiLV-C, genus Cilevirus, family Kitaviridae). CiLV-C is the etiological agent of citrus leprosis disease, a non-systemic infection considered the main viral disorder affecting citrus orchards in Brazil. Overall, we obtained 18 complete or near-complete viral genomes, 123 complete nucleotide sequences of the open reading frame (ORF) encoding the putative coat protein, and 204 partial nucleotide sequences of the ORF encoding the movement protein, from 430 infected Citrus spp. samples collected between 1932 and 2020. A thorough examination of the collected dataset suggested that the CiLV-C population consists of the major lineages CRD and SJP, unevenly distributed, plus a third one called ASU identified in this work, which is represented by a single isolate found in an herbarium sample collected in Asuncion, Paraguay, in 1937. Viruses from the three lineages share about 85% nucleotide sequence identity and show signs of inter-clade recombination events. Members of the lineage CRD were identified both in commercial and non-commercial citrus orchards. However, those of the lineages SJP were exclusively detected in samples collected in the citrus belt of São Paulo and Minas Gerais, the leading Brazilian citrus production region, after 2015. The most recent common ancestor of viruses of the three lineages dates back to, at least, ∼1500 years ago. Since citrus plants were introduced in the Americas by the Portuguese around the 1520s, the Bayesian phylodynamic analysis suggested that the ancestors of the main CiLV-C lineages likely originated in contact with native vegetation of South America. The intensive expansion of CRD and SJP lineages in Brazil started probably linked to the beginning of the local citrus industry. The high prevalence of CiLV-C in the citrus belt of Brazil likely ensues from the intensive connectivity between orchards, which represents a potential risk toward pathogen saturation across the region.

9.
Arch Virol ; 166(6): 1615-1622, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33774730

RESUMEN

We identified a novel plant rhabdovirus infecting native joá (Solanum aculeatissimum) plants in Brazil. Infected plants showed yellow blotches on the leaves, and typical enveloped bacilliform rhabdovirus particles associated with the nucleus were seen in thin sections by electron microscopy. The virus could be graft-transmitted to healthy joá and tomato plants but was not mechanically transmissible. RT-PCR using degenerate plant rhabdovirus L gene primers yielded an amplicon from extracted total RNA, the sequence of which was similar to those of alphanucleorhabdoviruses. Based on close sequence matches, especially with the type member potato yellow dwarf virus (PYDV), we adopted a degenerate-primer-walking strategy towards both genome ends. The complete genome of joá yellow blotch-associated virus (JYBaV) is comprised of 12,965 nucleotides, is less than 75% identical to that of its closest relative PYDV, and clusters with PYDV and other alphanucleorhabdoviruses in L protein phylogenetic trees, suggesting that it should be taxonomically classified in a new species in the genus Alphanucleorhabdovirus, family Rhabdoviridae. The genome organization of JYBaV is typical of the 'PYDV-like' subgroup of alphanucleorhabdoviruses, with seven genes (N-X-P-Y-M-G-L) separated by conserved intergenic regions and flanked by partly complementary 3' leader and 5' trailer regions.


Asunto(s)
Enfermedades de las Plantas/virología , Rhabdoviridae/aislamiento & purificación , Solanum/virología , Brasil , Genoma Viral , Filogenia , Hojas de la Planta/virología , Virus de Plantas , Rhabdoviridae/genética
10.
Plant Dis ; 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33787308

RESUMEN

Tradescantia spathacea (family Commelinaceae) is cultivated worldwide as an ornamental (Golczyk et al., 2013) and as medicinal plant (Tan et al., 2020). In 2019, 90 of ~180 plants of T. spathacea, grown in two beds of 4 m2 and exhibiting leaf mosaic were found in an experimental area at ESALQ/USP (Piracicaba municipality, São Paulo state, Brazil). Potyvirus-like flexuous filamentous particles were observed by transmission electron microscopy in foliar extracts of two symptomatic plants stained with 1% uranyl acetate. Total RNA was extracted using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific) from leaves of two symptomatic plants and separately subjected to a reverse transcription polymerase chain reaction (RT-PCR). The potyviruses degenerate pairs of primers CIFor/CIRev (Ha et al. 2008), which amplifies a fragment corresponding to part of the cylindrical inclusion protein gene, and WCIEN/PV1 (Maciel et al. 2011), which amplifies a fragment containing part of the capsid protein gene and the 3' untranslated region, were used. The expected amplicons (~700bp) were obtained from both total RNA extracts. Two amplicons from one sample were purified using the Wizard SV Gel and PCR Clean-Up System kit (Promega) and directly sequenced in both directions at Macrogen Inc (Seoul, South Korea). The obtained nucleotide sequences (GenBank MW430005 and MW503934) shared 95.32% and 97.79% nucleotide identity, respectively, with the corresponding sequences of the Brazilian isolate of the potyvirus costus stripe mosaic virus (CoSMV, MK286375) (Alexandre et al. 2020). Extract from an infected plant of T. spathacea was mechanically inoculated in 10 healthy plants of T. spathacea and two plants each of the following species: Capsicum annuum, Chenopodium amaranticolor, Commelina benghalensis, Datura stramonium, Gomphrena globosa, Nicandra physaloides, Nicotiana tabacum cvs. Turkish and Samsun, Solanum lycopersicum, T. palida, and T. zebrina. All T. spathacea plants exhibited mosaic and severe leaf malformation. C. benghalensis plants developed mild mosaic, whereas infected T. zebrina plants were asymptomatic. The plants of other species were not infected. RT-PCR with specific CoSMV primers CoSMVHC-F and CoSMVHC-R (Alexandre et al. 2020) confirmed the infection. Nucleotide sequences of amplicons obtained from experimentally inoculated T. spathacea and T. zebrina (MW430007 and MW430008) shared 94.56% and 94.94% identity with the corresponding sequence of a Brazilian CoSMV isolate (MK286375). None of eight virus-free plants of T. spathacea inoculated with CoSMV using Aphis craccivora exhibited symptoms, nor was CoSMV detected by RT-PCR. Lack of CoSMV transmission by A. solanella, Myzus persicae, and Uroleucon sonchi was previously reported (Alexandre et al. 2020). T. spathacea plants are commonly propagated vegetatively, and by seeds. Virus-free seeds, if available, can provide an efficient and easy way to obtain healthy plants. Only three viruses were reported in plants of the genus Tradescantia: Commelina mosaic virus, tradescantia mild mosaic virus, and a not fully characterized potyvirus (Baker and Zettler, 1988; Ciuffo et al., 2006; Kitajima 2020). CoSMV was recently reported infecting Costus spiralis and C. comosus (Alexandre et al. 2020). As far as we know, this is the first report of CoSMV infecting T. spathacea plants.

11.
Plant Dis ; 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33434036

RESUMEN

Strongylodon macrobotrys, commonly known as the jade vine, emerald vine, or turquoise jade vine, is a species of Fabaceae native to the Philippines. The plants have blue-green color inflorescences, which makinge them one of the most admired ornamental plants in Brazil (Muniz et al. 2015). In addition, the plants contain compounds with anticancer properties (Ragasa et al. (2014) isolated compounds from S. macrobotrys with anticancer properties. In March 2019, an adult jade plant, grown under the trellis system in an experimental area at the campus of the University of São Paulo (USP), Piracicaba, state of São Paulo, was found showing mosaic symptoms typical of a virus infection. Preliminary examination of negatively stained leaf extracts by transmission electron microscopy detected elongated, flexuous particles similar tolike thoseat of a potyviruses. Further observations of thin sections of symptomatic leaf tissues revealed the presence of cylindrical inclusions, as well as bundles of thin, elongated, and filamentous particles, typical of potyvirus infection in epidermal, parenchymalparenchymal, and vascular regions, as well as bundles of thin, elongated and filamentous particles. Subsequent molecular and biological assays confirmed the presence of a potyvirusTo identify the species of the virus, .Presence of a potyvirus was confirmed by subsequent molecular and biological assays. Ttotal RNA was extracted from a pool of symptomatic leaves from the plant using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific), and analyzed by one- step RT-PCR using potyviruses universal primers PV1/SP6 and WCIEN-sense (Mackenzie et al. 1998; Maciel et al. 2011), which amplify a 750-bp fragment. Total RNA extracted from an asymptomatic jade vine, obtained from a florist shop, was used as a negative controlincluded in the assay. PCR products at the expected size (~750-bp) were observed in the symptomatic plant but not in the asymptomatic plant. BLASTn analysis of the Nnucleotide sequence of the amplicon obtained only from total RNA of the symptomatic plant (GenBank accession no. MN970030) showed that it shares 90.82% to 97.859% identity with corresponding nucleotide sequences of the Korean isolate WS162 of soybean mosaic virus (SMV) deposited at the GenBank (, accession no. FJ640973, FJ640956, D88616). Extracts from symptomatic leaves of the jade plant wereas mechanically inoculated onto leaves of healthy plants of jade vine, Jack bean (Canavalia ensiformis), soybean cv. NA 5909 (Glycine max), cowpea (Vigna unguiculata), and passion fruit (Passiflora edulis f. flavicarpa). One plant of jade plant and four plants of each other species were inoculated , and infection was assessed based and monitored for symptom expression on symptom expression, and RT-PCR. The jade vine and Jack bean plants were infected by SMV, showingdeveloped mild mosaic symptoms approximately 60 and 15 days after inoculation, respectively , whereas the plants of other species were absent of any visible symptoms . To confirm the potyvirus identity, the jade vine samples were also tested by cConventional RT-PCR with SMV-specific primers pairs CP-F-SMV/CP-R-SMV (Jaramillo Mesa et al., 2018) and SMV-CPf/SMV-CPr (Wang and Ghabrial, 2002), thawhicht amplify fragments of 1000 990-bp and 469-bp90, respectively, nucleotides offrom the CP geneome region of SMV was performed, respectively. Amplicons of expected sizes were obtained from the total RNA of the leaves of field-infected and the mechanically inoculated plant of jade plantsvine as well as the Jack bean plants, but not from the asymptomatic jade plantvine and plants of other species the negative control. The viral nucleotide sequences obtained with the above pairs of primersBLASTn analysis of nucleotide sequences of the amplicons showed that they share 96.81% and 97.63% identity, respectively, with the same Korean SMV isolate WS162. These results demonstrate that… the field-symptomatic jade vine was infected with SMV, which is naturally transmitted by aphids speciess in a non-persistent manner and via soybean infected seeds (Hajimorad et al. 2018)( ). The virus appears to have has a restricted narrow natural host range., Aapart from soybean, and to date, it has only been reported the natural infection has been documented only in soybean, Lagenaria siceraria, Passiflora spp., Pinellia ternata, Senna occidentalis, and Vigna angularis (Almeida et al., 2002; Chakraborty et al. 2016; Hajimorad et al. 2018). To our knowledge, this is the first report of SMV in S. macrobotrys in the world. Further surveys are necessary to determine the incidence of the virus in ornamental jade plants vines and its importance as virus reservoirs for commercial soybean crops.

12.
Arthropod Struct Dev ; 60: 101023, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33401135

RESUMEN

The setae of mites are not regarded as secretory structures, yet in the flat mite genus Raoiella, each developmental stage presents droplets of fluid associated with the tips of their dorsal setae. To understand the origin of this fluid, the ultrastructure of the dorsal setae is investigated in females of Raoiella bauchani Beard & Ochoa and the invasive pest species Raoiella indica Hirst using scanning and transmission electron microscopy techniques. The dorsal setae are barbed along their entire length and have either a broadened plumose or a flat spatulate tip. Ultrastructurally, they present the typical features of mechanoreceptors, but have a "hollow" axis represented by a protoplasmatic core containing dendritic branches. This combination of ultrastructural characters indicates that the setae might be multimodal receptors: acting as both mechanoreceptors and contact chemoreceptors. The epidermal cells that underlie the setal sockets are columnar and have an ultrastructure that suggests they have a glandular function. Moreover, these cells present regular microvilli apically and form extracellular cuticular canals, containing epicuticular filaments, that are connected with the microvilli proximally and which open via pores onto the surface of the setal base distally. This arrangement indicates that the secretion from the microvilli passes into the canals and is then conducted to pores at the base of the seta, where it then accumulates and moves up the setal shaft, along the longitudinal grooves of the barbs. Based on similar arrangements in some insect taxa, the organization of the structures here observed in Raoiella suggests the passage of a non-polar, water insoluble, lipoid fluid through the cuticle, the function of which is still obscure.


Asunto(s)
Ácaros/ultraestructura , Sensilos/ultraestructura , Animales , Células Quimiorreceptoras/ultraestructura , Femenino , Mecanorreceptores/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Especificidad de la Especie
13.
Plant Dis ; 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054625

RESUMEN

Endive (Cichorium endivia L.) is a very important cash crop for small farmers in Brazil. During inspections conducted in the summer season of 2019-2020, leaf samples of C. endivia 'La Spezia' seedlings exhibiting typical symptoms of orthotospoviruses infection (viz. concentric chlorotic spots and apical leaf deformation; ≈ 10%) were collected in commercial greenhouses in Brasília-DF, Central Brazil. Leaves of one healthy and three symptomatic plants were initially evaluated via double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with polyclonal antibodies (produced at CNPH) raised against the nucleoprotein of the three major orthotospoviruses: tomato spotted wilt orthotospovirus (TSWV), groundnut ringspot orthotospovirus (GRSV) and tomato chlorotic spot orthotospovirus (TCSV). Strong serological reactions were observed only against GRSV antibodies exclusively in extracts from symptomatic samples. In order to confirm the causal agent of those symptoms, total RNA was extracted (Trizol®; Sigma) from infected leaf samples and used in a two-step reverse transcriptase polymerase chain reaction (RT-PCR) approach. Synthesis of the cDNA was carried out with the J13 primer (5'-CCC GGA TCC AGA GCA AT-3') (Cortez et al., 2001) followed by PCR assays with the primer pair BR60 (5'-AGA GCA ATC GTG TCA-3`) and BR65 (5'-ATC AAG CCT TCT GAA AGT CAT-3') (Eiras et al., 2001). This primer set amplifies a fragment of 453 bp including the untranslated region at the 3' terminus of the small RNA and the protein N-coding gene of at least five orthotospoviruses: TSWV, GRSV, TCSV, chrysanthemum stem necrosis orthotospovirus (CSNV) and zucchini lethal chlorosis orthotospovirus (ZLCV) (Eiras et al., 2001). The obtained amplicons (≈ 432 bp) were subsequently subjected to Sanger dideoxy nucleotide sequencing at CNPH. BLASTn analysis showed >99% identity with a wide array of GRSV isolates available in the GenBank. The nucleotide sequence of Tospo #1 (MT215222) and Tospo #3 (MT215224) isolates displayed 100% identity between them, whereas the Tospo #2 (MT215223) isolate displayed one non-synonymous point mutation in the 3' untranslated region in comparison with the former two isolates. Three plants of C. endivia, Capsicum annuum L. cv. Ikeda, tomato (Solanum lycopersicum L.) cv. Santa Clara and its isoline 'LAM-147' (with the Sw-5 resistance gene), Nicotiana rustica L., Lactuca sativa L. ('Vanda' and 'PI-342444') and Gomphrena globosa L. were mechanically inoculated individually with each GRSV isolate in order to confirm their pathogenicity. Chlorotic lesions and mosaic were observed seven days after inoculation of all plant materials, except the tomato inbred line 'LAM-147', which has the Sw-5 gene that confers broad-spectrum resistance to all Brazilian orthotospoviruses (Boiteux and Giordano, 1993). The GRSV infection was confirmed via DAS-ELISA and RT-PCR 15 days after inoculation, using the same set of antibodies and the primer pair BR60 / BR65. Transmission electron microscopy of ultrathin sections from symptomatic leaf tissues, both from field-infected and experimentally inoculated endive revealed the presence of typical orthotospovirus particles, within endoplasmic reticulum cisternae. Natural infection of endive by TSWV has been reported in Greece (Chatzivassiliou et al., 2000) and by TCSV in São Paulo State, Brazil and in Florida, USA (Subramanya Sastry et al., 2019). To our knowledge, it is the first report of GRSV naturally infecting this Asteraceae species in Brazil. Confirmation of GRSV infection of C. endivia plants is a relevant piece of information aiming to design effective disease management strategies. References: Boiteux, L.S. and Giordano, L. B. 1993. Euphytica 71: 151. Eiras, M. et al. 2001. Fitopatol. Bras. 26: 170. Chatzivassiliou, E.K. et al. 2000 Ann. Appl. Biol. 137: 127. Cortez, I., et al. 2001. Arch. Virol. 146: 265. Subramanya Sastry, K., et al. 2019. Encyclopedia of plant viruses and viroids. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3912-3.

14.
Plant Dis ; 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32886039

RESUMEN

Centella asiatica is a perennial, herbaceous creeper plant that belongs to the family Apiaceae. It has been known since prehistoric times and has been used for therapeutic and cosmetic purposes (James and Dubery 2009; Gohil et al. 2010), and is easily propagated vegetatively. In 2018, plants of C. asiatica exhibiting foliar symptoms of mosaic and malformation were found in the botanical garden of the Plantarum Institute (Nova Odessa municipality, São Paulo state - 22°46'45.8"S 47°18'47.5"W) and in an experimental area at ESALQ/USP (Piracicaba municipality, São Paulo state - 22°42'26.0"S 47°37'48.6"W). In both locations the plants were grown in beds of approximately 4 m2 and all of them were symptomatic. Initially, leaf extract from symptomatic C. asiatica plants was examined by transmission electron microscopy (TEM) after being negatively stained with 1% uranyl acetate. Potyvirus-like flexuous filamentous particles were observed in leaf samples from both locations. TEM of thin sections of symptomatic leaf tissues revealed the presence of cylindrical inclusions, characteristic of infection by potyviruses, in the cytoplasm of epidermal, parenchymal, and vascular cells. Total RNA was extracted from symptomatic leaves collected in the Plantarum Institute (3 samples), and at Escola Superior de Agricultura Luiz de Queiroz (1 sample) using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific, Waltham, USA). Reverse Transcription -Polymerase Chain Reaction (RT-PCR) was performed using the degenerate primers CIFor (5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3') and CIRev (5'-ACICCRTTYTCDATDATRTTIGTIGC-3'), which amplify a fragment of approximately 700 bp within the the cylindrical inclusion protein gene of potyviruses (Ha et al. 2008). Amplicons of the expected size were obtained for all four samples analysed. One amplicon per location was purified using the Wizard® SV Gel and PCR Clean-Up System kit (Promega), and directly sequenced in both directions at Macrogen Inc (Seoul, South Korea). The nucleotide sequences obtained from the symptomatic C. asiatica plants collected in the Plantarum Institute (GenBank Acc. No. MT668627), and at ESALQ/USP (GenBank Acc. No. MT668626) showed 97.1% and 96.2% identity, respectively, with the nucleotide sequence of a Brazilian isolate of bidens mosaic virus (BiMV), family Potyviridae, genus Potyvirus (GenBank Acc. No. KF649336). To confirm the infection of C. asiatica plants with BiMV, the previously extracted RNAs were analyzed by RT-PCR using the specific primers 8331 (5'-CGTGGGGCTATCCTGAATTG-3') and 9046 (5'-CCACATCAGAGAAGTGTGCC-3'), which amplify a fragment of 715 bp corresponding to the BiMV coat protein gene (Suzuki et al. 2009). The expected size amplicons were obtained for all four samples of symptomatic plants of C. asiatica. The nucleotide sequences of two amplicons (GenBank Acc. Nos. MT668628, and MT668629), representing plants from each location, showed 94.6% to 95.6% identities with corresponding nucleotide sequences of the coat protein gene of BiMV from Brazil (GenBank Acc. Nos. KF649336, AY960150, and AY960151). A leaf extract of a symptomatic C. asiatica plant was mechanically inoculated to healthy plants of Apium graveolens, Bidens pilosa, C. asiatica, Chenopodium amaranticolor, C. quinoa, Coriander sativum, Nicotiana benthamiana, N. tabacum and Petroselinum crispum. C. asiatica became systemically infected, reproducing the original symptoms of leaf mosaic and malformation. N. benthamiana was infected and developed severe mosaic symptoms, whereas C. amaranticolor and C. quinoa reacted only with necrotic and chlorotic local lesions, respectively. Other assayed plants were not infected. Potyvirus-like particles were observed by TEM in the infected plants and BiMV infection was confirmed by RT-PCR. Transmission assays of the BiMV isolate by aphids Myzus persicae and Aphys gossypii to healthy C. asiatica plants were also performed. Virus-free aphids of the two species, reared on Capsicum annuum and Gossypium hirsutum respectively, were fasted for 30 min and then placed, separately, on symptomatic leaves of C. asiatica for an acquisition access period (AAP) of 10 min. After that, groups of six insects were transferred, separately, to four healthy C. asiatica plants for an inoculation access period (IAP) of 24 h. After inoculation the insects were killed manually. Approximately 30 days later, one plant inoculated with each species of aphid exhibited symptoms and infection was confirmed by RT-PCR and nucleotide sequencing of the amplicons. BiMV was absent in control, non-inoculated plants in both mechacial and aphid transmission assays. Infection of spontaneously growing C. asiatica plants by potyvirus, determined by TEM, was previously reported in Curitiba and Colombo, state of Paraná, Brazil by Lima Neto and Souza (1981), but the virus was not fully characterized and identified. In addition to BiMV, plants of C. asiatica are also suscptible to infection with cucumber mosaic virus (CMV), as reported by Cardin and Moury (2010) in Madagascar. This is the first identification of BiMV naturally infecting C. asiatica. Additional works on effects of BiMV infection of C. asiatica on commercial production and pharmaceutical properties are required.

15.
Viruses ; 12(9)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942623

RESUMEN

The knowledge of genomic data of new plant viruses is increasing exponentially; however, some aspects of their biology, such as vectors and host range, remain mostly unknown. This information is crucial for the understanding of virus-plant interactions, control strategies, and mechanisms to prevent outbreaks. Typically, rhabdoviruses infect monocot and dicot plants and are vectored in nature by hemipteran sap-sucking insects, including aphids, leafhoppers, and planthoppers. However, several strains of a potentially whitefly-transmitted virus, papaya cytorhabdovirus, were recently described: (i) bean-associated cytorhabdovirus (BaCV) in Brazil, (ii) papaya virus E (PpVE) in Ecuador, and (iii) citrus-associated rhabdovirus (CiaRV) in China. Here, we examine the potential of the Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) to transmit BaCV, its morphological and cytopathological characteristics, and assess the incidence of BaCV across bean producing areas in Brazil. Our results show that BaCV is efficiently transmitted, in experimental conditions, by B. tabaci MEAM1 to bean cultivars, and with lower efficiency to cowpea and soybean. Moreover, we detected BaCV RNA in viruliferous whiteflies but we were unable to visualize viral particles or viroplasm in the whitefly tissues. BaCV could not be singly isolated for pathogenicity tests, identification of the induced symptoms, and the transmission assay. BaCV was detected in five out of the seven states in Brazil included in our study, suggesting that it is widely distributed throughout bean producing areas in the country. This is the first report of a whitefly-transmitted rhabdovirus.


Asunto(s)
Hemípteros/virología , Enfermedades de las Plantas/virología , Infecciones por Rhabdoviridae/transmisión , Infecciones por Rhabdoviridae/virología , Rhabdoviridae/aislamiento & purificación , Animales , Evolución Biológica , Brasil , Carica/virología , China , Ecuador , Genómica , Medio Oriente , Hojas de la Planta/virología , Virus de Plantas , Plantas/virología , Rhabdoviridae/clasificación , Rhabdoviridae/genética , Análisis de Secuencia
16.
Exp Appl Acarol ; 81(4): 531-546, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32748183

RESUMEN

The genus Brevipalpus (Tenuipalpidae) includes 291 described species commonly found in the tropical and subtropical regions. Morphological characters considered in the taxonomy of Brevipalpus species are difficult to discern, which often leads to erroneous identifications and the presence of cryptic species within species is suspected. New morphological characters are now considered relevant for identification of Brevipalpus species; among them, the morphology of the seminal receptacle (spermatheca) of the female insemination system. This feature has not been considered relevant until now; thus, there is little information about the insemination system in the available species descriptions. Hence, in the present study, ultrastructural details are provided for the insemination system in five species of Brevipalpus, representing different morphological groups. The seminal receptacle (spermatheca) and the insemination duct are illustrated using light, transmission and scanning electron microscopy. The spermatheca proved to have specific morphological features that can be useful for taxonomic purposes. On the other hand, its appearance within a population might be variable in a way that needs to be ascertained and evaluated.


Asunto(s)
Ácaros/anatomía & histología , Ácaros/fisiología , Animales , Femenino , Inseminación , Ácaros/ultraestructura
17.
Arch Virol ; 165(6): 1463-1467, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32306146

RESUMEN

Senna rizzinii is a flowering shrub found mainly in the northeast region of Brazil. Here, we report the coding-complete genome sequence, particle morphology, mode of transmission, and the indicator host responses of an isolate of the putative allexivirus cassia mild mosaic virus (CaMMV) found in S. rizzinii. The virus was transmitted mechanically to Chenopodium amaranticolor, C. quinoa, Gomphrena globosa, which showed local lesions, and S. rizzinii, and S. occidentalis, which were infected systemically. It was also efficiently transmitted to S. rizzinii by grafting. Seed transmission was not observed. The near-complete genome sequence of the virus is 7829 nucleotides in length, containing six open reading frames (ORF), like other allexiviruses.


Asunto(s)
Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Genoma Viral , Senna/virología , Brasil , Flexiviridae/clasificación , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , Secuenciación Completa del Genoma
18.
Front Microbiol ; 11: 206, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117189

RESUMEN

Passion fruit green spot and passion fruit sudden death are two reportedly distinct viral diseases that recurrently affect passion fruit (Passiflora spp.) groves in Brazil. Here we used a systematic approach that interconnects symptoms, transmission electron microscopy, RT-PCR detection assays followed by Sanger sequencing, and high-throughput sequencing of the RNA of affected passion fruit plants to gain insights about these diseases. Our data confirmed not only the involvement of cileviruses in these two pathologies, as previously suggested, but also that these viruses belong to the same tentative species: passion fruit green spot virus (PfGSV). Results revealed that PfGSV has a positive-sense RNA genome split into two molecules of approximately 9 kb (RNA1) and 5 kb (RNA2), which share about 50-70% nucleotide sequence identity with other viruses in the genus Cilevirus. Genome sequences of five PfGSV isolates suggest that they have more conserved RNA1 (<5% of nucleotide sequence variability) compared to RNA2 (up to 7% of variability) molecules. The highest nucleotide sequence divergence among PfGSV isolates and other cileviruses is in the genomic segment covering from the 5'-end of the RNA2 until the 5'-end of the open reading frame (ORF) p61, which includes the ORF p15 and the intergenic region. This genomic stretch also harbors a novel orphan ORF encoding a 13 kDa protein presenting a cysteine-rich domain. High variability of 5'-end of the RNA2 in cileviruses is discussed in an evolutionary context assuming that they share putative common ancestors with unclassified arthropod-infecting single-strand positive RNA viruses, including mosquito-specific viruses of the group Negevirus (clades Nelorpivirus and Sandwavirus), and other viruses in the family Kitaviridae.

19.
Acta amaz ; 50(1): 5-7, jan. - mar. 2020. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1455384

RESUMEN

The habanero chilli pepper, Capsicum chinense is an important crop in the Amazon Basin, mainly grown by small-scale producers. Capsicum chinense plants in an experimental field in the northern Brazilian state of Amazonas were found exhibiting characteristic symptoms of viral infection. Leaf sap from symptomatic plants examined under a transmission electron microscope revealed the presence of elongated flexuous particles and isometric particles. Using molecular assays, the viruses were identified as pepper yellow mosaic virus (PepYMV) and cucumber mosaic virus (CMV). Aphids, identified as Aphis gossypii, were found colonizing the C. chinense plants in the field and may be the vector for both PepYMV and CMV. We report the first occurrence of these viruses infecting C. chinense in the state of Amazonas.


A pimenta-de-cheiro, Capsicum chinense é uma cultura importante na Bacia Amazônica, cultivada principalmente por pequenos produtores. Plantas de C. chinense em um campo experimental localizado no norte do estado brasileiro do Amazonas, foram encontradas apresentando sintomas característicos de infecção viral. Extratos de amostras de folhas sintomáticas examinados ao microscópio eletrônico de transmissão revelaram a presença de partículas alongadas e flexuosas e de partículas isométricas. Análises moleculares permitiram identificar a presença do pepper yellow mosaic virus (PepYMV) e do cucumber mosaic virus (CMV). Pulgões, identificados como Aphis gossypii foram encontrados colonizando pimenteiras-de-cheiro neste campo experimental e podem representar o provável vetor de PepYMV e CMV. Este trabalho relata a primeira ocorrência desses vírus infectando C. chinense no estado do Amazonas.


Asunto(s)
Capsicum/virología , Cucumovirus/patogenicidad , Microscopía Electrónica de Transmisión/instrumentación , Reacción en Cadena de la Polimerasa
20.
Acta amaz ; 50(1)jan. - mar. 2020.
Artículo en Inglés | LILACS | ID: biblio-1118471

RESUMEN

The habanero chilli pepper, Capsicum chinense is an important crop in the Amazon Basin, mainly grown by small-scale producers. Capsicum chinense plants in an experimental field in the northern Brazilian state of Amazonas were found exhibiting characteristic symptoms of viral infection. Leaf sap from symptomatic plants examined under a transmission electron microscope revealed the presence of elongated flexuous particles and isometric particles. Using molecular assays, the viruses were identified as pepper yellow mosaic virus (PepYMV) and cucumber mosaic virus (CMV). Aphids, identified as Aphis gossypii, were found colonizing the C. chinense plants in the field and may be the vector for both PepYMV and CMV. We report the first occurrence of these viruses infecting C. chinense in the state of Amazonas. (AU)


Asunto(s)
Potyvirus , Cucumovirus , Microscopía Electrónica de Transmisión , Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...