Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
1.
Viruses ; 16(3)2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543688

RESUMEN

Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3'-N-P-P3-M-G-L-5' observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an additional short orphan ORF encoding a transmembrane helix was detected between P3 and M. The AaCV genome and inferred encoded proteins share the highest identity values, consistently < 60%, with their counterparts of the yerba mate chlorosis-associated virus (Cytorhabdovirus flaviyerbamate). The second virus, false jalap virus (FaJV), was detected in the herbaceous plant false jalap (Mirabilis jalapa L.) and represents together with tomato betanucleorhabdovirus 2, originally found in tomato plants in Slovenia, a tentative new species of the genus Betanucleorhabdovirus. FaJV particles accumulate in the perinuclear space, and electron-lucent viroplasms were observed in the nuclei of the infected cells. Notably, distinct from typical rhabdoviruses, most virions of AaCV were observed to be non-enclosed within membrane-bounded cavities. Instead, they were frequently seen in close association with surfaces of mitochondria or peroxisomes. Unlike FaJV, AaCV was successfully graft-transmitted to healthy plants of three species of the genus Aristolochia, while mechanical and seed transmission proved unsuccessful for both viruses. Data suggest that these viruses belong to two new tentative species within the subfamily Betarhabdovirinae.


Asunto(s)
Aristolochia , Mirabilis , Rhabdoviridae , Aristolochia/genética , Mirabilis/genética , Genoma Viral , Plantas/genética , Filogenia , Enfermedades de las Plantas
2.
Virus Res ; 339: 199264, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37944757

RESUMEN

Reverse genetics systems represent an important tool for studying the molecular and functional processes of viral infection. Citrus leprosis virus C (CiLV-C) (genus Cilevirus, family Kitaviridae) is the main pathogen responsible for the citrus leprosis (CL) disease in Latin America, one of the most economically important diseases of the citrus industry. Molecular studies of this pathosystem are limited due to the lack of infectious clones. Here, we report the construction and validation of a CiLV-C infectious cDNA clone based on an agroinfection system. The two viral RNA segments (RNA1 and RNA2) were assembled into two binary vectors (pJL89 and pLXAS). Agroinfiltrated Nicotiana benthamiana plants showed a response similar to that observed in the natural infection process with the formation of localized lesions restricted to the inoculated leaves. The virus recovered from the plant tissue infected with the infectious clones can be mechanically transmitted between N. benthamiana plants. Detection of CiLV-C subgenomic RNAs (sgRNAs) from agroinfiltrated and mechanically inoculated leaves further confirmed the infectivity of the clones. Finally, partial particle-purification preparations or sections of CiLV-C-infected tissue followed by transmission electron microscopy (TEM) analysis showed the formation of CiLV-C virions rescued by the infectious clone. The CiLV-C reverse genetic system now provides a powerful molecular tool to unravel the peculiarities of the CL pathosystem.


Asunto(s)
Citrus , Virus ARN , ADN Complementario/genética , ARN Subgenómico , ARN Viral/genética , Citrus/genética , Enfermedades de las Plantas
3.
Arch Virol ; 168(11): 272, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37837465

RESUMEN

Adenium obesum plants showing virus-like symptoms were collected in several regions of Brazil. Mottling symptoms like those observed in symptomatic plants in the field were reproduced in mechanically inoculated A. obesum plants. This potexvirus was named "desert rose mottle virus" (DRMoV), and its genome sequence was first determined by high-throughput sequencing and then confirmed by Sanger sequencing. The complete genome of DRMoV is 6,781 nt in length, excluding the poly(A) tail, and five ORFs were predicted in order from 5' to 3': Rep-TGB1-TGB2-TGB3-CP. Phylogenetic analysis based on Rep amino acid sequences showed different clustering among potexviruses. These data suggest that RDMoV is a new member of the genus Potexvirus, and the binomial name "Potexvirus adenii" is proposed for its species.


Asunto(s)
Potexvirus , Potexvirus/genética , Secuencia de Bases , Filogenia , Secuencia de Aminoácidos , Sistemas de Lectura Abierta , Plantas , Genoma Viral
4.
Front Plant Sci ; 14: 1202139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564383

RESUMEN

Plumeria pudica, known as bridal bouquet, exhibiting characteristic symptoms of orthotospovirus infection were found in different localities in Brazil. Symptoms were restricted to leaves of the middle and lower thirds of a few branches of each plant. Electron microscopy, molecular analyses, and complete genome sequencing identified the orthotospovirus as groundnut ringspot virus (GRSV),member of the species Orthotospovirus arachianuli. The virus was poorly transmitted mechanically to P. pudica. Reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analyses performed using total RNA extracted from leaf blades, primary veins, petioles, and regions of petiole insertion on branches indicated the presence of GRSV, predominantly in the symptomatic leaf blades. Symptomatic branches propagate vegetatively, often resulting in plants expressing GRSV symptoms. In contrast, vegetative propagation of the asymptomatic branches of infected plants predominantly generates plants without GRSV symptoms. The resistance of P. pudica plants to GRSV infection, restricted systemic viral movement, and expression of symptoms in infected plants suggest that this orthotospovirus does not threaten this ornamental plant.

5.
Plants (Basel) ; 12(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36987059

RESUMEN

Citrus leprosis (CL) is the main viral disease affecting the Brazilian citriculture. Sweet orange (Citrus sinensis L. Osbeck) trees affected by CL were identified in small orchards in Southern Brazil. Rod-like particles of 40 × 100 nm and electron lucent viroplasm were observed in the nucleus of infected cells in symptomatic tissues. RNA extracts from three plants, which proved negative by RT-PCR for known CL-causing viruses, were analyzed by high throughput sequencing and Sanger sequencing after RT-PCR. The genomes of bi-segmented ss(-)RNA viruses, with ORFs in a typical organization of members of the genus Dichorhavirus, were recovered. These genomes shared 98-99% nt sequence identity among them but <73% with those of known dichorhavirids, a value below the threshold for new species demarcation within that genus. Phylogenetically, the three haplotypes of the new virus called citrus bright spot virus (CiBSV) are clustered with citrus leprosis virus N, which is a dichorhavirus transmitted by Brevipalpus phoenicis sensu stricto. In CiBSV-infected citrus plants, B. papayensis and B. azores were found, but the virus could only be transmitted to Arabidopsis plants by B. azores. The study provides the first evidence of the role of B. azores as a viral vector and supports the assignment of CiBSV to the tentative new species Dichorhavirus australis.

6.
Front Microbiol ; 13: 836743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464977

RESUMEN

Plant viruses transmitted by mites of the genus Brevipalpus are members of the genera Cilevirus, family Kitaviridae, or Dichorhavirus, family Rhabdoviridae. They produce non-systemic infections that typically display necrotic and/or chlorotic lesions around the inoculation loci. The cilevirus citrus leprosis virus C (CiLV-C) causes citrus leprosis, rated as one of the most destructive diseases affecting this crop in the Americas. CiLV-C is vectored in a persistent manner by the flat mite Brevipalpus yothersi. Upon the ingestion of viral particles with the content of the infected plant cell, virions must pass through the midgut epithelium and the anterior podocephalic gland of the mites. Following the duct from this gland, virions reach the salivary canal before their inoculation into a new plant cell through the stylet canal. It is still unclear whether CiLV-C multiplies in mite cells and what mechanisms contribute to its movement through mite tissues. In this study, based on direct observation of histological sections from viruliferous mites using the transmission electron microscope, we posit the hypothesis of the paracellular movement of CiLV-C in mites which may involve the manipulation of septate junctions. We detail the presence of viral particles aligned in the intercellular spaces between cells and the gastrovascular system of Brevipalpus mites. Accordingly, we propose putative genes that could control either active or passive paracellular circulation of viral particles inside the mites.

7.
Viruses ; 13(12)2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960766

RESUMEN

Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.


Asunto(s)
Citrus/virología , Mutación , Proteínas de Movimiento Viral en Plantas/genética , Virus de Plantas/fisiología , Virus del Mosaico de la Alfalfa/genética , Movimiento , Plantas Modificadas Genéticamente , Replicación Viral
8.
Microorganisms ; 9(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671330

RESUMEN

Although citrus leprosis disease has been known for more than a hundred years, one of its causal agents, citrus leprosis virus C2 (CiLV-C2), is poorly characterized. This study described the association of CiLV-C2 movement protein (MP) and capsid protein (p29) with biological membranes. Our findings obtained by computer predictions, chemical treatments after membrane fractionation, and biomolecular fluorescence complementation assays revealed that p29 is peripherally associated, while the MP is integrally bound to the cell membranes. Topological analyses revealed that both the p29 and MP expose their N- and C-termini to the cell cytoplasmic compartment. The implications of these results in the intracellular movement of the virus were discussed.

9.
Sci Rep ; 11(1): 2943, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536554

RESUMEN

Citrus leprosis (CL) is a severe disease that affects citrus orchards mainly in Latin America. It is caused by Brevipalpus-transmitted viruses from genera Cilevirus and Dichorhavirus. Currently, no reports have explored the movement machinery for the cilevirus. Here, we have performed a detailed functional study of the p32 movement protein (MP) of two cileviruses. Citrus leprosis-associated viruses are not able to move systemically in neither their natural nor experimental host plants. However, here we show that cilevirus MPs are able to allow the cell-to-cell and long-distance transport of movement-defective alfalfa mosaic virus (AMV). Several features related with the viral transport were explored, including: (i) the ability of cilevirus MPs to facilitate virus movement on a nucleocapsid assembly independent-manner; (ii) the generation of tubular structures from transient expression in protoplast; (iii) the capability of the N- and C- terminus of MP to interact with the cognate capsid protein (p29) and; (iv) the role of the C-terminus of p32 in the cell-to-cell and long-distance transport, tubule formation and the MP-plasmodesmata co-localization. The MP was able to direct the p29 to the plasmodesmata, whereby the C-terminus of MP is independently responsible to recruit the p29 to the cell periphery. Furthermore, we report that MP possess the capacity to enter the nucleolus and to bind to a major nucleolar protein, the fibrillarin. Based on our findings, we provide a model for the role of the p32 in the intra- and intercellular viral spread.


Asunto(s)
Proteínas de la Cápside/metabolismo , Citrus/virología , Enfermedades de las Plantas/virología , Proteínas de Movimiento Viral en Plantas/metabolismo , Virus de Plantas/metabolismo , Animales , Ácaros/virología , Nucleocápside/metabolismo , Virus de Plantas/patogenicidad , Protoplastos/metabolismo , Protoplastos/virología
10.
Front Microbiol ; 11: 571807, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250868

RESUMEN

Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement mechanism mediated by dichorhaviruses movement proteins (MPs) and the homologous and heterologous interactions among viral proteins related to the movement of citrus leprosis-associated viruses. The membrane-spanning property and topology analysis of the nucleocapsid (N) and MP proteins from two dichorhaviruses revealed that the MPs are proteins tightly associated with the cell membrane, exposing their N- and C-termini to the cytoplasm and the inner part of the nucleus, whereas the N proteins are not membrane-associated. Subcellular localization analysis revealed the presence of dichorhavirus MPs at the cell surface and in the nucleus, while the phosphoproteins (P) were located exclusively in the nucleus and the N proteins in both the cytoplasm and the nucleus. Co-expression analysis with the MP, P, and N proteins showed an interaction network formed between them. We highlight the MP capability to partially redistribute the previously reported N-P core complex, redirecting a portion of the N from the nucleus to the plasmodesmata at the cell periphery, which indicates not only that the MP might guide the intracellular trafficking of the viral infective complex but also that the N protein may be associated with the cell-to-cell movement mechanism of dichorhaviruses. The movement functionality of these MPs was analyzed by using three movement-defective infectious systems. Also, the MP capacity to generate tubular structures on the protoplast surface by ectopic expression was analyzed. Finally, we evaluated the in vivo protein-protein interaction networks between the dichorhavirus MP and/or N proteins with the heterologous cilevirus movement components, which suggest a broad spectrum of interactions, highlighting those among capsid proteins (CP), MPs, and Ns from citrus leprosis-associated viruses. These data may aid in understanding the mixed infection process naturally observed in the field caused by distinct BTVs.

11.
Arch Virol ; 165(10): 2349-2353, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32743696

RESUMEN

The complete nucleotide sequence of a new member of the family Potyviridae, which we propose to name "Arachis virus Y" (ArVY), is reported from forage peanut plants (Arachis pintoi) exhibiting virus-like symptoms. The ArVY positive-sense RNA genome is 9,213 nucleotides long and encodes a polyprotein with 2,947 amino acids that is predicted to be cleaved into 10 mature proteins. The complete single open reading frame (ORF) of ArVY shares 47% and 34% nucleotide and amino acid sequence identity, respectively, with the closest related virus, soybean yellow shoot virus. Electron microscopic analysis revealed elongated viral particles typical of those found in plant cells infected with potyviruses.


Asunto(s)
Arachis/virología , Genoma Viral , Filogenia , Potyviridae/genética , ARN Viral/genética , Proteínas Virales/genética , Brasil , Sistemas de Lectura Abierta , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Potyviridae/clasificación , Potyviridae/aislamiento & purificación , Potyviridae/ultraestructura , Virión/genética , Virión/aislamiento & purificación , Virión/ultraestructura
12.
Front Microbiol ; 11: 1231, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655520

RESUMEN

Citrus leprosis virus C (CiLV-C) belongs to the genus Cilevirus, family Kitaviridae, and is considered the most devastating virus infecting citrus in Brazil, being the main viral pathogen responsible for citrus leprosis (CL), a severe disease that affects citrus orchards in Latin America. Here, proteins encoded by CiLV-C genomic RNA 1 and 2 were screened for potential RNA silencing suppressor (RSS) activity by five methods. Using the GFP-based reporter agroinfiltration assay, we have not found potential local suppressor activity for the five CiLV-C encoded proteins. However, when RSS activity was evaluated using the alfalfa mosaic virus (AMV) system, we found that the p29, p15, and p61 CiLV-C proteins triggered necrosis response and increased the AMV RNA 3 accumulation, suggesting a suppressive functionality. From the analysis of small interfering RNAs (siRNAs) accumulation, we observed that the ectopic expression of the p29, p15, and p61 reduced significantly the accumulation of GFP derived siRNAs. The use of the RSS defective turnip crinkle virus (TCV) system revealed that only the trans-expression of the p15 protein restored the cell-to-cell viral movement. Finally, the potato virus X (PVX) system revealed that the expression of p29, p15, and p61 increased the PVX RNA accumulation; in addition, the p29 and p15 enhanced the pathogenicity of PVX resulting in the death of tobacco plants. Furthermore, PVX-p61 infection resulted in a hypersensitive response (HR), suggesting that p61 could also activate a plant defense response mechanism. This is the first report describing the RSS activity for CiLV-C proteins and, moreover, for a member of the family Kitaviridae.

13.
Viruses ; 11(7)2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277203

RESUMEN

Baculoviruses are capable of infecting a wide diversity of insect pests. In the 1990s, the Dione juno nucleopolyhedrovirus (DijuNPV) was isolated from larvae of the major passionfruit defoliator pest Dione juno juno (Nymphalidae) and described at ultrastructural and pathological levels. In this study, the complete genome sequence of DijuNPV was determined and analyzed. The circular genome presents 122,075 bp with a G + C content of 50.9%. DijuNPV is the first alphabaculovirus completely sequenced that was isolated from a nymphalid host and may represent a divergent species. It appeared closely related to Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) and other Choristoneura-isolated group I alphabaculoviruses. We annotated 153 open reading frames (ORFs), including a set of 38 core genes, 26 ORFs identified as present in lepidopteran baculoviruses, 17 ORFs unique in baculovirus, and several auxiliary genes (e.g., bro, cathepsin, chitinase, iap-1, iap-2, and thymidylate kinase). The thymidylate kinase (tmk) gene was present fused to a dUTPase (dut) gene in other baculovirus genomes. DijuNPV likely lost the dut portion together with the iap-3 homolog. Overall, the genome sequencing of novel alphabaculoviruses enables a wide understanding of baculovirus evolution.


Asunto(s)
Mariposas Diurnas/virología , Nucleopoliedrovirus/clasificación , Nucleopoliedrovirus/aislamiento & purificación , Passiflora , Filogenia , Animales , Baculoviridae/clasificación , Baculoviridae/genética , Composición de Base , Secuencia de Bases , Evolución Biológica , Mapeo Cromosómico , Genoma Viral , Larva/virología , Mariposas Nocturnas/virología , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/ultraestructura , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
14.
Arch Microbiol ; 201(8): 1061-1073, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31123792

RESUMEN

Plants are colonized by diverse microorganisms that can substantially impact their health and growth. Understanding bacterial diversity and the relationships between bacteria and phytopathogens may be key to finding effective biocontrol agents. We evaluated the bacterial community associated with anthracnose symptomatic and asymptomatic leaves of guarana, a typical tropical crop. Bacterial communities were assessed through culture-independent techniques based on extensive 16S rRNA sequencing, and cultured bacterial strains were evaluated for their ability to inhibit the growth of Colletotrichum sp. as well as for enzyme and siderophore production. The culture-independent method revealed that Proteobacteria was the most abundant phylum, but many sequences were unclassified. The emergence of anthracnose disease did not significantly affect the bacterial community, but the abundance of the genera Acinetobacter, Pseudomonas and Klebsiella were significantly higher in the symptomatic leaves. In vitro growth of Colletotrichum sp. was inhibited by 11.38% of the cultured bacterial strains, and bacteria with the highest inhibition rates were isolated from symptomatic leaves, while asymptomatic leaves hosted significantly more bacteria that produced amylase and polygalacturonase. The bacterial isolate Bacillus sp. EpD2-5 demonstrated the highest inhibition rate against Colletotrichum sp., whereas the isolates EpD2-12 and FD5-12 from the same genus also had high inhibition rates. These isolates were also able to produce several hydrolytic enzymes and siderophores, indicating that they may be good candidates for the biocontrol of anthracnose. Our work demonstrated the importance of using a polyphasic approach to study microbial communities from plant diseases, and future work should focus on elucidating the roles of culture-independent bacterial communities in guarana anthracnose disease.


Asunto(s)
Antibiosis/fisiología , Agentes de Control Biológico/aislamiento & purificación , Colletotrichum/crecimiento & desarrollo , Paullinia/microbiología , Proteobacteria/aislamiento & purificación , Acinetobacter/clasificación , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , Amilasas/metabolismo , Antracosis/microbiología , Bacillus/clasificación , Bacillus/genética , Bacillus/aislamiento & purificación , Klebsiella/clasificación , Klebsiella/genética , Klebsiella/aislamiento & purificación , Microbiota , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Poligalacturonasa/metabolismo , Proteobacteria/clasificación , Proteobacteria/genética , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Bosque Lluvioso , Sideróforos/metabolismo
15.
Front Plant Sci ; 9: 1299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254655

RESUMEN

Citrus leprosis (CL) is a re-emergent viral disease affecting citrus crops in the Americas, and citrus leprosis virus C (CiLV-C), belonging to the genus Cilevirus, is the main pathogen responsible for the disease. Despite the economic importance of CL to the citrus industry, very little is known about the performance of viral proteins. Here, we present a robust in vivo study around functionality of p29, p15, p61, MP, and p24 CiLV-C proteins in the host cells. The intracellular sub-localization of all those viral proteins in plant cells are shown, and their co-localization with the endoplasmic reticulum (ER), Golgi complex (GC) (p15, MP, p61 and p24), actin filaments (p29, p15 and p24), nucleus (p15), and plasmodesmata (MP) are described. Several features are disclosed, including i) ER remodeling and redistribution of GC apparatus, ii) trafficking of the p29 and MP along the ER network system, iii) self-interaction of the p29, p15, and p24 and hetero-association between p29-p15, p29-MP, p29-p24, and p15-MP proteins in vivo. We also showed that all proteins are associated with biological membranes; whilst p15 is peripherally associated, p29, p24, and MP are integrally bound to cell membranes. Furthermore, while p24 exposes an N-cytoplasm-C-lumen topology, p29, and p15 are oriented toward the cytoplasmic face of the biological membrane. Based on our findings, we discuss the possible performance of each protein in the context of infection and a hypothetical model encompassing the virus spread and sites for replication and particle assembly is suggested.

16.
Curr Opin Virol ; 33: 66-73, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30081359

RESUMEN

Although diseases caused by Brevipalpus-transmitted viruses (BTV) became relevant for agriculture a century ago, their causal agents have been only recently characterized and classified in two new genera of plant-infecting viruses: Cilevirus and Dichorhavirus. In this review, we highlight both similarities and differences between these viruses emphasizing their current taxonomy and historical classification, phylogeny, genomic organization, gene expression, and the latest research developments on BTVs. Additionally, we stress particular features of interactions with their mite vectors and plant hosts that support, from an evolutionary perspective, the potential convergence of both viral groups.


Asunto(s)
Ácaros y Garrapatas/virología , Vectores Arácnidos/virología , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Adaptación Biológica , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Filogenia , Enfermedades de las Plantas/virología , Virus ARN/genética , ARN Viral/genética
17.
Arch Virol ; 163(9): 2519-2524, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29869032

RESUMEN

The genus Dichorhavirus includes plant-infecting rhabdoviruses with bisegmented genomes that are horizontally transmitted by false spider mites of the genus Brevipalpus. The complete genome sequences of three isolates of the putative dichorhavirus clerodendrum chlorotic spot virus were determined using next-generation sequencing (Illumina) and traditional RT-PCR. Their genome organization, sequence similarity and phylogenetic relationship to other viruses, and transmissibility by Brevipalpus yothersi mites support the assignment of these viruses to a new species of dichorhavirus, as suggested previously. New data are discussed stressing the reliability of the current rules for species demarcation and taxonomic status criteria within the genus Dichorhavirus.


Asunto(s)
Clerodendrum/virología , Genoma Viral , Hibiscus/virología , Enfermedades de las Plantas/virología , ARN Viral/genética , Rhabdoviridae/genética , Animales , Vectores Arácnidos/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Ácaros/virología , Filogenia , Hojas de la Planta/virología , Rhabdoviridae/clasificación , Rhabdoviridae/aislamiento & purificación , Secuenciación Completa del Genoma
18.
Int J Syst Evol Microbiol ; 68(3): 962-966, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29458464

RESUMEN

Symptoms of fruit phyllody and slow growth, which are suggestive of phytoplasma infection, were observed in strawberry plants cultivated in commercial fields. In order to provide evidence of association of phytoplasma with affected plants, assays for detecting and identifying were performed through computer-simulated restriction fragment length polymorphism (RFLP) and phylogenetic analysis. Total DNA was extracted from symptomatic and asymptomatic samples and used as template in nested PCR primed by the primers P1/Tint followed by R16F2n/16R2. Amplified DNA fragments of 1.2 kb from the 16S rRNA gene revealed the presence of phytoplasma in all symptomatic samples. Molecular detection was confirmed by electron transmission microscopy, which evidenced pleomorphic bodies in the phloem vessels. Nucleotide sequence representative of the strawberry phytoplasma shared 97.2 to 99 % similarity with phytoplasmas currently classified as members of the distinct subgroups within the 16SrXIII group. Similarity coefficient (F) values ranged from 0.70 to 0.92, indicating that strawberry phytoplasma delineates a new strain in addition to 'Candidatus Phytoplasma hispanicum'-related strains. The evolutionary tree displayed that this strain emerges as a new branch in relation to those previously described. The novel strain, designated SFP (strawberry fruit phyllody) phytoplasma represents the new 16SrXIII-J subgroup and its sequence, denominated SFP-Br02, was deposited in the GenBank database (EU719108). These findings contribute for the knowledge of the genetic diversity existing among members of the group 16SrXIII and establishes strawberry as an additional host of representatives of this group in Brazil.


Asunto(s)
Fragaria/microbiología , Filogenia , Phytoplasma/clasificación , Enfermedades de las Plantas/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , Técnicas de Tipificación Bacteriana , Brasil , Cartilla de ADN , ADN Bacteriano/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Microbiol Res ; 206: 33-42, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146258

RESUMEN

The present study assessed the plant growth-promoting (PGP) traits and diversity of culturable rhizobacteria associated with guarana (Paullinia cupana), a typical tropical plant. Ninety-six bacteria were isolated, subjected to biochemical tests, and identified by partial or total 16S rDNA sequencing. Proteobacteria and Firmicutes were the dominant rhizospheric phyla found, and Burkholderia and Bacillus were the most abundant genera. Thirteen strains exhibited the four PGP traits evaluated, and most of them belonged to the genus Burkholderia. Two multi-trait PGP strains, RZ2MS9 (Bacillus sp.) and RZ2MS16 (Burkholderia ambifaria), expressively promoted corn and soybean growth under greenhouse conditions. Compared to the non-inoculated control, increases in corn root dry weight of 247.8 and 136.9% were obtained with RZ2MS9 and RZ2MS16 inoculation, respectively, at 60days after seeding. The dry weights of corn and soybean shoots were significantly higher than those of non-inoculated plants, showing increases of more than 47% for both strains and crops. However, soybean root dry weight did not increased after bacterial inoculation with either strain. The colonization behavior of RZ2MS16 was assessed using GFP-labeling combined with fluorescence microscopy and a cultivation-based approach for quantification. RZ2MS16:gfp was able to colonize the roots and shoots of corn and soybean, revealing an endophytic behavior.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Desarrollo de la Planta , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Bacillus/aislamiento & purificación , Bacillus/fisiología , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Brasil , Burkholderia/aislamiento & purificación , Burkholderia/fisiología , Productos Agrícolas , ADN Ribosómico/genética , Ácidos Indolacéticos/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno , Fenotipo , Fosfatos/metabolismo , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Semillas/crecimiento & desarrollo , Semillas/microbiología , Sideróforos/metabolismo , Microbiología del Suelo
20.
Phytopathology ; 107(8): 963-976, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28398876

RESUMEN

Citrus leprosis (CL) is a viral disease endemic to the Western Hemisphere that produces local necrotic and chlorotic lesions on leaves, branches, and fruit and causes serious yield reduction in citrus orchards. Samples of sweet orange (Citrus × sinensis) trees showing CL symptoms were collected during a survey in noncommercial citrus areas in the southeast region of Brazil in 2013 to 2016. Transmission electron microscopy analyses of foliar lesions confirmed the presence of rod-like viral particles commonly associated with CL in the nucleus and cytoplasm of infected cells. However, every attempt to identify these particles by reverse-transcription polymerase chain reaction tests failed, even though all described primers for the detection of known CL-causing cileviruses and dichorhaviruses were used. Next-generation sequencing of total RNA extracts from three symptomatic samples revealed the genome of distinct, although highly related (>92% nucleotide sequence identity), viruses whose genetic organization is similar to that of dichorhaviruses. The genome sequence of these viruses showed <62% nucleotide sequence identity with those of orchid fleck virus and coffee ringspot virus. Globally, the deduced amino acid sequences of the open reading frames they encode share 32.7 to 63.8% identity with the proteins of the dichorhavirids. Mites collected from both the naturally infected citrus trees and those used for the transmission of one of the characterized isolates to Arabidopsis plants were anatomically recognized as Brevipalpus phoenicis sensu stricto. Molecular and biological features indicate that the identified viruses belong to a new species of CL-associated dichorhavirus, which we propose to call Citrus leprosis N dichorhavirus. Our results, while emphasizing the increasing diversity of viruses causing CL disease, lead to a reevaluation of the nomenclature of those viruses assigned to the genus Dichorhavirus. In this regard, a comprehensive discussion is presented.


Asunto(s)
Citrus/virología , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus de Plantas/aislamiento & purificación , Animales , Clonación Molecular , Efecto Citopatogénico Viral , Genoma Viral , Ácaros/clasificación , Ácaros/ultraestructura , Ácaros/virología , Filogenia , Hojas de la Planta/ultraestructura , Hojas de la Planta/virología , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...