Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(13): 15101-15112, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33720691

RESUMEN

Pyrolytically prepared iron and nitrogen codoped carbon (Fe/N/C) catalysts are promising nonprecious metal electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell applications. Fabrication of the Fe/N/C catalysts with Fe-Nx active sites having precise structures is now required. We developed a strategy for thermally controlled construction of the Fe-Nx structure in Fe/N/C catalysts by applying a bottom-up synthetic methodology based on a N-doped graphene nanoribbon (N-GNR). The preorganized aromatic rings within the precursors assist graphitization during generation of the N-GNR structure with iron-coordinating sites. The Fe/N/C catalyst prepared from the N-GNR precursor, iron ion, and the carbon support Vulcan XC-72R provides a high onset potential of 0.88 V (vs reversible hydrogen electrode (RHE)) and promotes efficient four-electron ORR. X-ray absorption fine structure (XAFS) and X-ray photoelectron spectroscopy (XPS) studies reveal that the N-GNR precursor induces the formation of iron-coordinating nitrogen species during pyrolysis. The details of the graphitization process of the precursor were further investigated by analyzing the precursors pyrolyzed at various temperatures using MgO particles as a sacrificial template, with the results indicating that the graphitized structure was obtained at 700 °C. The preorganized N-GNR precursors and its pyrolysis conditions for graphitization are found to be important factors for generation of the Fe-Nx active sites along with the N-GNR structure in high-performance Fe/N/C catalysts for the ORR.

2.
Chemphyschem ; 14(11): 2560-9, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23784806

RESUMEN

Thermally stable Brønsted acid sites were generated on alumina-supported niobium oxide (Nb2O5/Al2O3) by calcination at high temperatures, such as 1123 K. The results of structural characterization by using Fourier-transform infrared (FTIR) spectroscopy, TEM, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) analysis indicated that the Nb2O5 monolayer domains were highly dispersed over alumina at low Nb2O5 loadings, such as 5 wt%, and no Brønsted acid sites were presents. The coverage of Nb2O5 monolayer domains over Al2O3 increased with increasing Nb2O5 loading and almost-full coverage was obtained at a loading of 16 wt%. A sharp increase in the number of hydroxy groups, which acted as Brønsted acid sites, was observed at this loading level. The relationship between the acidic properties and the structure of the material suggested that the bridging hydroxy groups (Nb-O(H)-Nb), which were formed at the boundaries between the domains of the Nb2O5 monolayer, acted as thermally stable Brønsted acid sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...