Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8018): 899-904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723661

RESUMEN

Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.


Asunto(s)
Diatomeas , Fijación del Nitrógeno , Nitrógeno , Océanos y Mares , Rhizobium , Agua de Mar , Simbiosis , Carbono/metabolismo , Diatomeas/metabolismo , Diatomeas/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Filogenia , Rhizobium/clasificación , Rhizobium/metabolismo , Rhizobium/fisiología , Agua de Mar/microbiología , Agua de Mar/química , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , Océano Atlántico
2.
ISME J ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676557

RESUMEN

Ammonia-oxidising archaea and nitrite-oxidising bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification - the aerobic oxidation of ammonia to nitrite and further to nitrate - and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterise two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the marine sponge Coscinoderma matthewsi using a combination of molecular tools, in situ visualisation, and physiological rate measurements. Both represent a new genus in the ammonia-oxidising archaeal class Nitrososphaeria and the nitrite-oxidising bacterial order Nitrospirales, respectively. Furthermore, we show that larvae of this viviparous sponge are densely colonised by representatives of Ca. Nitrosokoinonia and Ca. Nitrosymbion indicating vertical transmission. In adults, the representatives of both symbiont genera are located extracellularly in the mesohyl. Comparative metagenome analyses and physiological data suggest that ammonia-oxidising archaeal symbionts of the genus Ca. Nitrosokoinonia strongly rely on endogenously produced nitrogenous compounds (i.e., ammonium, urea, nitriles/cyanides, and creatinine) rather than on exogenous ammonium sources taken up by the sponge. Additionally, the nitrite-oxidising bacterial symbionts of the genus Ca. Nitrosymbion may reciprocally support the ammonia-oxidisers with ammonia via the utilisation of sponge-derived urea and cyanate. Comparative analyses of published environmental 16S rRNA gene amplicon data revealed that Ca. Nitrosokoinonia and Ca. Nitrosymbion are widely distributed and predominantly associated with marine sponges and corals, suggesting a broad relevance of our findings.

3.
Microbiome ; 12(1): 55, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493180

RESUMEN

BACKGROUND: Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete. This is particularly relevant as Patescibacteria are considered to be associated with microbial host cells and can therefore influence the abundance and temporal variability of other microbial groups that are important for WWTP functioning. RESULTS: Here, we evaluated the in silico coverage of widely used 16S rRNA gene-targeted primer pairs and redesigned a primer pair targeting the V4 region of bacterial and archaeal 16S rRNA genes to expand its coverage for Patescibacteria. We then experimentally evaluated and compared the performance of the original and modified V4-targeted primers on 565 WWTP samples from the MiDAS global sample collection. Using the modified primer pair, the percentage of ASVs classified as Patescibacteria increased from 5.9 to 23.8%, and the number of detected patescibacterial genera increased from 560 to 1576, while the detected diversity of the remaining microbial community remained similar. Due to this significantly improved coverage of Patescibacteria, we identified 23 core genera of Patescibacteria in WWTPs and described the global distribution pattern of these unusual microbes in these systems. Finally, correlation network analysis revealed potential host organisms that might be associated with Patescibacteria in WWTPs. Interestingly, strong indications were found for an association between Patescibacteria of the Saccharimonadia and globally abundant polyphosphate-accumulating organisms of the genus Ca. Phosphoribacter. CONCLUSIONS: Our study (i) provides an improved 16S rRNA gene V4 region-targeted amplicon primer pair inclusive of Patescibacteria with little impact on the detection of other taxa, (ii) reveals the diversity and distribution patterns of Patescibacteria in WWTPs on a global scale, and (iii) provides new insights into the ecological role and potential hosts of Patescibacteria in WWTPs. Video Abstract.


Asunto(s)
Microbiota , Purificación del Agua , Aguas Residuales , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Bacterias/genética , Microbiota/genética
4.
ISME J ; 17(8): 1208-1223, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188915

RESUMEN

Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.


Asunto(s)
Poríferos , Animales , Poríferos/microbiología , Taurina , Amoníaco , Carbono , Simbiosis , Filogenia
5.
ISME J ; 16(6): 1647-1656, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35260828

RESUMEN

Deep oligotrophic lakes sustain large populations of the class Nitrososphaeria (Thaumarchaeota) in their hypolimnion. They are thought to be the key ammonia oxidizers in this habitat, but their impact on N-cycling in lakes has rarely been quantified. We followed this archaeal population in one of Europe's largest lakes, Lake Constance, for two consecutive years using metagenomics and metatranscriptomics combined with stable isotope-based activity measurements. An abundant (8-39% of picoplankton) and transcriptionally active archaeal ecotype dominated the nitrifying community. It represented a freshwater-specific species present in major inland water bodies, for which we propose the name "Candidatus Nitrosopumilus limneticus". Its biomass corresponded to 12% of carbon stored in phytoplankton over the year´s cycle. Ca. N. limneticus populations incorporated significantly more ammonium than most other microorganisms in the hypolimnion and were driving potential ammonia oxidation rates of 6.0 ± 0.9 nmol l‒1 d‒1, corresponding to potential cell-specific rates of 0.21 ± 0.11 fmol cell-1 d-1. At the ecosystem level, this translates to a maximum capacity of archaea-driven nitrification of 1.76 × 109 g N-ammonia per year or 11% of N-biomass produced annually by phytoplankton. We show that ammonia-oxidizing archaea play an equally important role in the nitrogen cycle of deep oligotrophic lakes as their counterparts in marine ecosystems.


Asunto(s)
Archaea , Nitrificación , Amoníaco/metabolismo , Archaea/genética , Archaea/metabolismo , Ecosistema , Lagos , Oxidación-Reducción , Filogenia
6.
Nat Commun ; 12(1): 4774, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362886

RESUMEN

Biological N2 fixation was key to the expansion of life on early Earth. The N2-fixing microorganisms and the nitrogenase type used in the Proterozoic are unknown, although it has been proposed that the canonical molybdenum-nitrogenase was not used due to low molybdenum availability. We investigate N2 fixation in Lake Cadagno, an analogue system to the sulfidic Proterozoic continental margins, using a combination of biogeochemical, molecular and single cell techniques. In Lake Cadagno, purple sulfur bacteria (PSB) are responsible for high N2 fixation rates, to our knowledge providing the first direct evidence for PSB in situ N2 fixation. Surprisingly, no alternative nitrogenases are detectable, and N2 fixation is exclusively catalyzed by molybdenum-nitrogenase. Our results show that molybdenum-nitrogenase is functional at low molybdenum conditions in situ and that in contrast to previous beliefs, PSB may have driven N2 fixation in the Proterozoic ocean.


Asunto(s)
Chromatiaceae/metabolismo , Molibdeno/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Biomasa , Ciclo del Carbono , Dióxido de Carbono , Tamaño de la Célula , Chromatiaceae/genética , Metagenoma , Modelos Teóricos , Nitrogenasa/metabolismo , Océanos y Mares , Análisis de la Célula Individual
7.
Nature ; 591(7850): 445-450, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658719

RESUMEN

Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.


Asunto(s)
Anaerobiosis , Bacterias/metabolismo , Cilióforos/metabolismo , Desnitrificación , Metabolismo Energético , Interacciones Microbiota-Huesped , Simbiosis , Adenosina Trifosfato/metabolismo , Bacterias/genética , Evolución Biológica , Respiración de la Célula , Cilióforos/química , Cilióforos/citología , Ciclo del Ácido Cítrico/genética , Transporte de Electrón/genética , Genoma Bacteriano/genética , Interacciones Microbiota-Huesped/genética , Mitocondrias , Nitratos/metabolismo , Oxígeno/metabolismo , Filogenia
8.
Methods Mol Biol ; 2246: 207-224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33576991

RESUMEN

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) is an imaging method used to identify microorganisms in environmental samples based on their phylogeny. CARD-FISH can be combined with nano-scale secondary ion mass spectrometry (nanoSIMS) to directly link the cell identity to their activity, measured as the incorporation of stable isotopes into hybridized cells after stable isotope probing. In environmental microbiology, a combination of these methods has been used to determine the identity and growth of uncultured microorganisms, and to explore the factors controlling their activity. Additionally, FISH-nanoSIMS has been widely used to directly visualize microbial interactions in situ. Here, we describe a step-by-step protocol for a combination of CARD-FISH, laser marking, and nanoSIMS analysis on samples from aquatic environments.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Espectrometría de Masa de Ion Secundario/métodos , Isótopos de Carbono/metabolismo , Microbiología Ambiental , Marcaje Isotópico/métodos , Microbiota/genética , Microbiota/fisiología , Isótopos de Nitrógeno/metabolismo , Filogenia
9.
ISME J ; 15(1): 348-353, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32879458

RESUMEN

Stable isotope probing (SIP) is a key tool for identifying the microorganisms catalyzing the turnover of specific substrates in the environment and to quantify their relative contributions to biogeochemical processes. However, SIP-based studies are subject to the uncertainties posed by cross-feeding, where microorganisms release isotopically labeled products, which are then used by other microorganisms, instead of incorporating the added tracer directly. Here, we introduce a SIP approach that has the potential to strongly reduce cross-feeding in complex microbial communities. In this approach, the microbial cells are exposed on a membrane filter to a continuous flow of medium containing isotopically labeled substrate. Thereby, metabolites and degradation products are constantly removed, preventing consumption of these secondary substrates. A nanoSIMS-based proof-of-concept experiment using nitrifiers in activated sludge and 13C-bicarbonate as an activity tracer showed that Flow-SIP significantly reduces cross-feeding and thus allows distinguishing primary consumers from other members of microbial food webs.


Asunto(s)
Microbiota , Isótopos de Carbono/análisis , Cadena Alimentaria , Marcaje Isotópico , Isótopos
10.
Water Res ; 186: 116372, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916620

RESUMEN

Ammonia-oxidizing bacteria (AOB) of the betaproteobacterial genera Nitrosomonas and Nitrosospira are key nitrifying microorganisms in many natural and engineered ecosystems. Since many AOB remain uncultured, fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has been one of the most widely used approaches to study the community composition, abundance, and other features of AOB directly in environmental samples. However, the established and widely used AOB-specific 16S rRNA-targeted FISH probes were designed up to two decades ago, based on much smaller rRNA gene sequence datasets than available today. Several of these probes cover their target AOB lineages incompletely and suffer from a weak target specificity, which causes cross-hybridization of probes that should detect different AOB lineages. Here, a set of new highly specific 16S rRNA-targeted oligonucleotide probes was developed and experimentally evaluated that complements the existing probes and enables the specific detection and differentiation of the known, major phylogenetic clusters of betaproteobacterial AOB. The new probes were successfully applied to visualize and quantify AOB in activated sludge and biofilm samples from seven pilot- and full-scale wastewater treatment systems. Based on its improved target group coverage and specificity, the refined probe set will facilitate future in situ analyses of AOB.


Asunto(s)
Amoníaco , Ecosistema , Hibridación Fluorescente in Situ , Sondas de Oligonucleótidos/genética , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
11.
ISME J ; 14(12): 2967-2979, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32709974

RESUMEN

Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from  Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.


Asunto(s)
Bacterias , Nitritos , Bacterias/genética , Concentración de Iones de Hidrógeno , Metagenoma , Ciclo del Nitrógeno , Oxidación-Reducción
12.
Nat Commun ; 11(1): 767, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034151

RESUMEN

Nitrification, the oxidation of ammonia via nitrite to nitrate, is a key process in marine nitrogen (N) cycling. Although oceanic ammonia and nitrite oxidation are balanced, ammonia-oxidizing archaea (AOA) vastly outnumber the main nitrite oxidizers, the bacterial Nitrospinae. The ecophysiological reasons for this discrepancy in abundance are unclear. Here, we compare substrate utilization and growth of Nitrospinae to AOA in the Gulf of Mexico. Based on our results, more than half of the Nitrospinae cellular N-demand is met by the organic-N compounds urea and cyanate, while AOA mainly assimilate ammonium. Nitrospinae have, under in situ conditions, around four-times higher biomass yield and five-times higher growth rates than AOA, despite their ten-fold lower abundance. Our combined results indicate that differences in mortality between Nitrospinae and AOA, rather than thermodynamics, biomass yield and cell size, determine the abundances of these main marine nitrifiers. Furthermore, there is no need to invoke yet undiscovered, abundant nitrite oxidizers to explain nitrification rates in the ocean.

13.
Nat Microbiol ; 4(2): 234-243, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30531977

RESUMEN

Ammonia-oxidizing archaea of the phylum Thaumarchaeota are among the most abundant marine microorganisms1. These organisms thrive in the oceans despite ammonium being present at low nanomolar concentrations2,3. Some Thaumarchaeota isolates have been shown to utilize urea and cyanate as energy and N sources through intracellular conversion to ammonium4-6. Yet, it is unclear whether patterns observed in culture extend to marine Thaumarchaeota, and whether Thaumarchaeota in the ocean directly utilize urea and cyanate or rely on co-occurring microorganisms to break these substrates down to ammonium. Urea utilization has been reported for marine ammonia-oxidizing communities7-10, but no evidence of cyanate utilization exists for marine ammonia oxidizers. Here, we demonstrate that in the Gulf of Mexico, Thaumarchaeota use urea and cyanate both directly and indirectly as energy and N sources. We observed substantial and linear rates of nitrite production from urea and cyanate additions, which often persisted even when ammonium was added to micromolar concentrations. Furthermore, single-cell analysis revealed that the Thaumarchaeota incorporated ammonium-, urea- and cyanate-derived N at significantly higher rates than most other microorganisms. Yet, no cyanases were detected in thaumarchaeal genomic data from the Gulf of Mexico. Therefore, we tested cyanate utilization in Nitrosopumilus maritimus, which also lacks a canonical cyanase, and showed that cyanate was oxidized to nitrite. Our findings demonstrate that marine Thaumarchaeota can use urea and cyanate as both an energy and N source. On the basis of these results, we hypothesize that urea and cyanate are substrates for ammonia-oxidizing Thaumarchaeota throughout the ocean.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Cianatos/metabolismo , Nitrificación/fisiología , Agua de Mar/microbiología , Urea/metabolismo , Amoníaco/química , Archaea/clasificación , Archaea/genética , Cianatos/química , Metabolismo Energético , Golfo de México , Nitritos/metabolismo , Oxidación-Reducción , Oxígeno/análisis , Filogenia , Agua de Mar/química , Urea/química
14.
mBio ; 9(4)2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991589

RESUMEN

Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus "Candidatus Nitrotoga" are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure "Ca Nitrotoga" culture was available. Here we obtained the first "Ca Nitrotoga" isolate from activated sludge. This organism, "Candidatus Nitrotoga fabula," prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous "Ca Nitrotoga" enrichments, which were described as cold-adapted NOB. "Ca Nitrotoga fabula" also showed an unusually high tolerance to nitrite (activity at 30 mM NO2-) and nitrate (up to 25 mM NO3-). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent Km (Km(app)) of ~89 µM nitrite and a Vmax of ~28 µmol of nitrite per mg of protein per h. Key metabolic pathways of "Ca Nitrotoga fabula" were reconstructed from the closed genome. "Ca Nitrotoga fabula" possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in "Ca Nitrotoga" and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, "Ca Nitrotoga fabula" uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable "Ca Nitrotoga fabula" to survive nitrite depletion and colonize new niches.IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus "Candidatus Nitrotoga" and performed a detailed physiological and genomic characterization of this organism ("Candidatus Nitrotoga fabula"). Differences between key phenotypic properties of "Ca Nitrotoga fabula" and those of previously enriched "Ca Nitrotoga" members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that "Ca Nitrotoga" are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in "Ca Nitrotoga fabula" expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.


Asunto(s)
Gallionellaceae/metabolismo , Genoma Bacteriano , Nitratos/metabolismo , Nitritos/metabolismo , Aguas del Alcantarillado/microbiología , Evolución Molecular , Gallionellaceae/crecimiento & desarrollo , Gallionellaceae/aislamiento & purificación , Cinética , Redes y Vías Metabólicas/genética , Oxidación-Reducción , Temperatura
15.
Proc Natl Acad Sci U S A ; 112(36): 11371-6, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305944

RESUMEN

Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers, suggests a wide distribution of this extended interaction between ammonia and nitrite oxidizers, which enables nitrite-oxidizing bacteria to indirectly use urea as a source of energy. A soluble formate dehydrogenase lends additional ecophysiological flexibility and allows N. moscoviensis to use formate, with or without concomitant nitrite oxidation, using oxygen, nitrate, or both compounds as terminal electron acceptors. Compared with Nitrospira defluvii from lineage I, N. moscoviensis shares the Nitrospira core metabolism but shows substantial genomic dissimilarity including genes for adaptations to elevated oxygen concentrations. Reciprocal feeding and metabolic versatility, including the participation in different nitrogen cycling processes, likely are key factors for the niche partitioning, the ubiquity, and the high diversity of Nitrospira in natural and engineered ecosystems.


Asunto(s)
Amoníaco/metabolismo , Bacterias/metabolismo , Nitritos/metabolismo , Urea/metabolismo , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecosistema , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo , Agua Dulce/microbiología , Genoma Bacteriano/genética , Metagenoma/genética , Datos de Secuencia Molecular , Nitratos/metabolismo , Ciclo del Nitrógeno , Oxidación-Reducción , Oxígeno/metabolismo , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Ureasa/genética , Ureasa/metabolismo
16.
ISME J ; 9(3): 643-55, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25148481

RESUMEN

Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Aguas del Alcantarillado/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecosistema , Hibridación Fluorescente in Situ , Nitrificación , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Nitrógeno/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...