Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 8(49): 33786-33793, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960421

RESUMEN

Good quality, complementary-metal-oxide-semiconductor (CMOS) technology compatible, 200 mm graphene was obtained on Ge(001)/Si(001) wafers in this work. Chemical vapor depositions were carried out at the deposition temperatures of 885 °C using CH4 as carbon source on epitaxial Ge(100) layers, which were grown on Si(100), prior to the graphene synthesis. Graphene layer with the 2D/G ratio ∼3 and low D mode (i.e., low concentration of defects) was measured over the entire 200 mm wafer by Raman spectroscopy. A typical full-width-at-half-maximum value of 39 cm-1 was extracted for the 2D mode, further indicating that graphene of good structural quality was produced. The study also revealed that the lack of interfacial oxide correlates with superior properties of graphene. In order to evaluate electrical properties of graphene, its 2 × 2 cm2 pieces were transferred onto SiO2/Si substrates from Ge/Si wafers. The extracted sheet resistance and mobility values of transferred graphene layers were ∼1500 ± 100 Ω/sq and µ ≈ 400 ± 20 cm2/V s, respectively. The transferred graphene was free of metallic contaminations or mechanical damage. On the basis of results of DFT calculations, we attribute the high structural quality of graphene grown by CVD on Ge to hydrogen-induced reduction of nucleation probability, explain the appearance of graphene-induced facets on Ge(001) as a kinetic effect caused by surface step pinning at linear graphene nuclei, and clarify the orientation of graphene domains on Ge(001) as resulting from good lattice matching between Ge(001) and graphene nucleated on such nuclei.

2.
Transplant Proc ; 46(6): 1953-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25131080

RESUMEN

BACKGROUND: Replacement of ß-cells with the use of isolated islet allotransplantation (IT) is an emerging therapy for type 1 diabetics with hypoglycemia unawareness. The current standard protocol calls for a 36-72-hour culture period before IT. We examined 13 clinical islet preparations with ≥2 purity fractions to determine the effect of culture on viability. METHODS: After standard islet isolation and purification, pure islet fractions were placed at 37°C with 5% CO2 for 12-24 hours and subsequently moved to 22°C, whereas less pure fractions were cultured at 22°C for the entire duration. Culture density was targeted at a range of 100-200 islet equivalents (IEQ)/cm(2) adjusted for purity. Islets were assessed for purity (dithizone staining), quantity (pellet volume and DNA), and viability (oxygen consumption rate normalized to DNA content [OCR/DNA] and membrane integrity). RESULTS: Results indicated that purity was overestimated, especially in less pure fractions. This was evidenced by significantly larger observed pellet sizes than expected and tissue amount as quantified with the use of a dsDNA assay when available. Less pure fractions showed significantly lower OCR/DNA and membrane integrity compared with pure. The difference in viability between the 2 purity fractions may be due to a variety of reasons, including hypoxia, nutrient deficiency, toxic metabolite accumulation, and/or proteolytic enzymes released by acinar tissue impurities that are not neutralized by human serum albumin in the culture media. CONCLUSIONS: Current clinical islet culture protocols should be examined further, especially for less pure fractions, to ensure the maintenance of viability before transplantation. Even though relatively small, the difference in viability is important because the amount of dead or dying tissue introduced into recipients may be dramatically increased, especially with less pure preparations.


Asunto(s)
Técnicas de Cultivo de Célula , Supervivencia Celular/fisiología , Islotes Pancreáticos/citología , Islotes Pancreáticos/crecimiento & desarrollo , Recuento de Células , Membrana Celular , Separación Celular , Medios de Cultivo , Ditizona , Humanos , Trasplante de Islotes Pancreáticos , Consumo de Oxígeno/fisiología , Estudios Retrospectivos
3.
Transplant Proc ; 46(6): 1985-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25131089

RESUMEN

BACKGROUND: Human islet allotransplantation for the treatment of type 1 diabetes is in phase III clinical trials in the U.S. and is the standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose-stimulated insulin release, and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following 1 transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. METHOD: In this article we report on the assessment of clinical islet allograft preparations using OCR dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. RESULTS: OCR dose was most predictive of CTO. IE dose was also highly predictive, while glucoses stimulated insulin release and membrane integrity stains were not. CONCLUSION: OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical human islet allotransplantation.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/cirugía , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Consumo de Oxígeno/fisiología , Estudios de Cohortes , Humanos , Insulina/metabolismo , Valor Predictivo de las Pruebas , Curva ROC , Trasplante Homólogo , Resultado del Tratamiento
4.
Transplant Proc ; 46(6): 1989-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25131090

RESUMEN

BACKGROUND: The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). METHOD: IE were isolated from two manufacturing centers and shipped in 10-cm(2) surface area SRM vessels in temperature- and pressure-controlled containers to a distant center after at least 2 days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a microcentrifuge tube negative control (NC). LD was designed to mimic the standard culture density for IE preparations (200 IE/cm(2)), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1-3 vessels. Upon receipt, islets were assessed for viability (measured by oxygen consumption rate normalized to DNA content [OCR/DNA)]), quantity (measured by DNA), and, when possible, potency and function (measured by dynamic glucose-stimulated insulin secretion measurements and transplants in immunodeficient B6 Rag(+/-) mice). Postshipment OCR/DNA was not reduced in HD vs LD and was substantially reduced in the NC condition. HD islets exhibited normal function postshipment. Based on the data, we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/fisiología , Embalaje de Productos/instrumentación , Elastómeros de Silicona , Manejo de Especímenes/instrumentación , Animales , Recuento de Células , Técnicas de Cultivo de Célula , Hipoxia de la Célula/fisiología , Supervivencia Celular , Humanos , Insulina/metabolismo , Secreción de Insulina , Ratones , Consumo de Oxígeno/fisiología
5.
Cell Med ; 2(3): 105-110, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24083059

RESUMEN

The demand for high-quality islets for transplantation in type I diabetics will increase as the current clinical trials transition into standard of care. The mode of preservation of donor pancreata is critical to this mission since islets are very sensitive to ischemic injury. Hypothermic perfusion preservation (HPP) is being investigated for extended pancreas preservation in light of the beneficial effects reported for other organs. The present pilot study aimed to establish the potency of porcine islets isolated from pancreata after 24 h of HPP at 4-8°C. The study design included a split-lobe pancreas model that permitted paired comparisons of islets isolated from 24-h HPP splenic lobes with nonperfused, fresh control duodenal/connecting lobes stored at 4°C for <3 h. Prior to transplantation, islet viability was assessed in vitro using the ratio of oxygen consumption rate to DNA (OCR/DNA) assay and correlated with subsequent in vivo function by transplantation in diabetic immunodeficient mice. The OCR/DNA (mean ± SD) measured after 7 days of culture and immediately prior to transplantation for islets from the 24-h HPP group was 269 ± 19 nmol/min/mg DNA, which was higher but not statistically different to the mean of 236 ± 43 for the counterpart control group. All four nude mice transplanted with islets from the 24-h HPP group showed diabetes reversal, compared with five of six transplants from the control group. In conclusion, islets isolated from adult porcine pancreata after 24-h HPP exhibited high viability as measured by OCR/DNA and were able to consistently reverse diabetes in a nude mouse bioassay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA