Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 47, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937263

RESUMEN

BACKGROUND: The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. RESULTS: Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. CONCLUSIONS: The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis.


Asunto(s)
Genes de Insecto , Genoma de los Insectos , Genómica , Tribolium/genética , Animales , Sitios de Unión , Biología Computacional/métodos , Genómica/métodos , MicroARNs/genética , Anotación de Secuencia Molecular , Filogenia , Interferencia de ARN , Reproducibilidad de los Resultados
2.
Insect Biochem Mol Biol ; 98: 16-24, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29653176

RESUMEN

Even in times of advanced site-specific genome editing tools, the improvement of DNA transposases is still on high demand in the field of transgenesis: especially in emerging model systems where evaluated integrase landing sites have not yet been created and more importantly in non-model organisms such as agricultural pests and disease vectors, in which reliable sequence information and genome annotations are still pending. In fact, random insertional mutagenesis is essential to identify new genomic locations that are not influenced by position effects and thus can serve as future stable transgene integration sites. In this respect, a hyperactive version of the most widely used piggyBac transposase (PBase) has been engineered. The hyperactive version (hyPBase) is currently available with the original insect codon-based coding sequence (ihyPBase) as well as in a mammalian codon-optimized (mhyPBase) version. Both facilitate significantly higher rates of transposition when expressed in mammalian in vitro and in vivo systems compared to the classical PBase at similar protein levels. Here we demonstrate that the usage of helper plasmids encoding the hyPBase - irrespective of the codon-usage - also strikingly increases the rate of successful germline transformation in the Mediterranean fruit fly (Medfly) Ceratitis capitata, the red flour beetle Tribolium castaneum, and the vinegar fly Drosophila melanogaster. hyPBase-encoding helpers are therefore highly suitable for the generation of transgenic strains of diverse insect orders. Depending on the species, we achieved up to 15-fold higher germline transformation rates compared to PBase and generated hard to obtain transgenic T. castaneum strains that express constructs affecting fitness and viability. Moreover, previously reported high sterility rates supposedly caused by hyPBase (iPB7), encoded by ihyPBase, could not be confirmed by our study. Therefore, we value hyPBase as an effective genetic engineering tool that we highly recommend for insect transgenesis.


Asunto(s)
Técnicas de Transferencia de Gen , Insectos , Transformación Genética , Transposasas/metabolismo , Animales , Animales Modificados Genéticamente
3.
Development ; 144(16): 2969-2981, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811313

RESUMEN

Anterior patterning of animals is based on a set of highly conserved transcription factors but the interactions within the protostome anterior gene regulatory network (aGRN) remain enigmatic. Here, we identify the red flour beetle Tribolium castaneum ortholog of foxQ2 (Tc-foxQ2) as a novel upstream component of the aGRN. It is required for the development of the labrum and higher order brain structures, namely the central complex and the mushroom bodies. We reveal Tc-foxQ2 interactions by RNAi and heat shock-mediated misexpression. Surprisingly, Tc-foxQ2 and Tc-six3 mutually activate each other, forming a novel regulatory module at the top of the aGRN. Comparisons of our results with those of sea urchins and cnidarians suggest that foxQ2 has acquired more upstream functions in the aGRN during protostome evolution. Our findings expand the knowledge on foxQ2 gene function to include essential roles in epidermal development and central brain patterning.


Asunto(s)
Proteínas de Insectos/metabolismo , Tribolium/embriología , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cnidarios/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Insectos/genética , Erizos de Mar/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tribolium/metabolismo
4.
BMC Genomics ; 14: 5, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23324472

RESUMEN

BACKGROUND: RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. RESULTS: Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. CONCLUSIONS: These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity.


Asunto(s)
Fenotipo , Interferencia de ARN , Tribolium/genética , Secuencia de Aminoácidos , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Inyecciones , Proteínas de Insectos/química , Proteínas de Insectos/deficiencia , Proteínas de Insectos/genética , Masculino , Datos de Secuencia Molecular , Madres , Especificidad de la Especie , Tribolium/anatomía & histología , Tribolium/embriología , alfa Carioferinas/química , alfa Carioferinas/deficiencia , alfa Carioferinas/genética
5.
Proc Natl Acad Sci U S A ; 109(20): 7782-6, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22552230

RESUMEN

Canonical Wnt signaling has been implicated in an AP axis polarizing mechanism in most animals, despite limited evidence from arthropods. In the long-germ insect, Drosophila, Wnt signaling is not required for global AP patterning, but in short-germ insects including Tribolium castaneum, loss of Wnt signaling affects development of segments in the growth zone but not those defined in the blastoderm. To determine the effects of ectopic Wnt signaling, we analyzed the expression and function of axin, which encodes a highly conserved negative regulator of the pathway. We found Tc-axin transcripts maternally localized to the anterior pole in freshly laid eggs. Expression spread toward the posterior pole during the early cleavage stages, becoming ubiquitous by the time the germ rudiment formed. Tc-axin RNAi produced progeny phenotypes that ranged from mildly affected embryos with cuticles displaying a graded loss of anterior structures, to defective embryos that condensed at the posterior pole in the absence of serosa. Altered expression domains of several blastodermal markers indicated anterior expansion of posterior fates. Analysis of other canonical Wnt pathway components and the expansion of Tc-caudal expression, a Wnt target, suggest that the effects of Tc-axin depletion are mediated through this pathway and that Wnt signaling must be inhibited for proper anterior development in Tribolium. These studies provide unique evidence that canonical Wnt signaling must be carefully regulated along the AP axis in an arthropod, and support an ancestral role for Wnt activity in defining AP polarity and patterning in metazoan development.


Asunto(s)
Proteína Axina/metabolismo , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Tribolium/embriología , Vía de Señalización Wnt/fisiología , Animales , Proteína Axina/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...