Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Nat Commun ; 15(1): 6054, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025867

RESUMEN

The homeostatic regulation of sleep is characterized by rebound sleep after prolonged wakefulness, but the molecular and cellular mechanisms underlying this regulation are still unknown. In this study, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent activity control of parvalbumin (PV)-expressing cortical neurons is involved in homeostatic regulation of sleep in male mice. Prolonged wakefulness enhances cortical PV-neuron activity. Chemogenetic suppression or activation of cortical PV neurons inhibits or induces rebound sleep, implying that rebound sleep is dependent on increased activity of cortical PV neurons. Furthermore, we discovered that CaMKII kinase activity boosts the activity of cortical PV neurons, and that kinase activity is important for homeostatic sleep rebound. Here, we propose that CaMKII-dependent PV-neuron activity represents negative feedback inhibition of cortical neural excitability, which serves as the distributive cortical circuits for sleep homeostatic regulation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Corteza Cerebral , Homeostasis , Neuronas , Parvalbúminas , Sueño , Vigilia , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Parvalbúminas/metabolismo , Masculino , Sueño/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Vigilia/fisiología , Corteza Cerebral/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Mol Metab ; 86: 101968, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885788

RESUMEN

The transcriptional coactivator PGC-1α has been implicated in the regulation of multiple metabolic processes. However, the previously reported metabolic phenotypes of mice deficient in PGC-1α have been inconsistent. PGC-1α exists as multiple isoforms, including variants transcribed from an alternative first exon. We show here that alternative PGC-1α variants are the main entity that increases PGC-1α during exercise. These variants, unlike the canonical isoform of PGC-1α, are robustly upregulated in human skeletal muscle after exercise. Furthermore, the extent of this upregulation correlates with oxygen consumption. Mice lacking these variants manifest impaired energy expenditure during exercise, leading to the development of obesity and hyperinsulinemia. The alternative variants are also upregulated in brown adipose tissue in response to cold exposure, and mice lacking these variants are intolerant of a cold environment. Our findings thus indicate that an increase in PGC-1α expression, attributable mostly to upregulation of alternative variants, is pivotal for adaptive enhancement of energy expenditure and heat production and thereby essential for the regulation of whole-body energy metabolism.

3.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570190

RESUMEN

Cardiovascular system develops from the lateral plate mesoderm. Its three primary cell lineages (hematopoietic, endothelial, and muscular) are specified by the sequential actions of conserved transcriptional factors. ETV2, a master regulator of mammalian hemangioblast development, however, is absent in the chicken genome and acts downstream of NPAS4L in zebrafish. Here, we investigated the epistatic relationship between NPAS4L and ETV2 in avian hemangioblast development. We showed that ETV2 is deleted in all 363 avian genomes analyzed. Mouse ETV2 induced LMO2, but not NPAS4L or SCL, expression in chicken mesoderm. Squamate (lizards, geckos, and snakes) genomes contain both NPAS4L and ETV2 In Madagascar ground gecko, both genes were expressed in developing hemangioblasts. Gecko ETV2 induced only LMO2 in chicken mesoderm. We propose that both NPAS4L and ETV2 were present in ancestral amniote, with ETV2 acting downstream of NPAS4L in endothelial lineage specification. ETV2 may have acted as a pioneer factor by promoting chromatin accessibility of endothelial-specific genes and, in parallel with NPAS4L loss in ancestral mammals, has gained similar function in regulating blood-specific genes.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Ratones , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aves , Mamíferos/metabolismo
5.
Elife ; 122024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466627

RESUMEN

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here, we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny in mice. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.


Asunto(s)
Timocitos , Factores de Transcripción , Ratones , Animales , Timocitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratones Endogámicos C57BL , Timo/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Epitelio/metabolismo
6.
Biol Pharm Bull ; 47(2): 394-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325828

RESUMEN

Midbrain dopaminergic neurons respond to rewards and have a crucial role in positive motivation and pleasure. Electrical stimulation of dopaminergic neurons and/or their axonal fibers and arborization has been often used to motivate animals to perform cognitive tasks. Still, the electrical stimulation is incompatible with electrophysiological recordings. In this light, optical stimulation following artificial expression of channelrhodopsin-2 (ChR2) in the cell membrane has been also used, but the expression level of ChR2 varies among researchers. Thus, we attempted to stably express ChR2 fused with a red fluorescence protein, mCherry, in dopaminergic neurons. Since dopamine transporter (DAT) gene is known as a marker for dopaminergic neurons, we inserted ChR2-mCherry into the downstream of the DAT gene locus of the rat genome by clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) genome editing and created DAT-ChR2-mCherry knock-in rats. Immunohistochemistry showed that ChR2-mCherry was expressed in dopaminergic neurons in homozygote knock-in rats, whereas whole-cell recordings revealed that ChR2-mCherry-positive neurons did not fire action potentials upon blue light stimulation, indicating that ChR2 was not functional for optogenetics. Nevertheless, fluorescent labeling of dopaminergic neurons mediated by mCherry could help characterize them physiologically and histologically.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteína Fluorescente Roja , Neuronas Dopaminérgicas/metabolismo
7.
J Cell Physiol ; 239(2): e31174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108578

RESUMEN

The Dja2 knockout (Dja2-/- ) mice had respiratory distress, and >60% died within 2 days after birth. The surviving adult Dja2-/- mice were infertile and the lungs of Dja2-/- mice showed several abnormalities, including the processing defect of prosurfactant protein C in the alveolar epithelial type II cells and the accumulation of glycolipids in enlarged alveolar macrophages. The luminal pH of acidic organelles in Dja2-/- cells was shifted to pH 5.37-5.45. This deviated pH was immediately restored to control levels (pH 4.56-4.65) by the addition of a diuretic, ethyl isopropyl amiloride (EIPA). Although the role of DJA2 in maintaining the pH homeostasis of lysosome-related organelles is currently obscure, this rapid and remarkable pH resilience is best explained by an EIPA-sensitive proton efflux machinery that is disorganized and overactivated due to the loss of Dja2.


Asunto(s)
Lisosomas , Protones , Animales , Ratones , Transporte Biológico , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Macrófagos Alveolares , Ratones Endogámicos C57BL
8.
Sci Rep ; 13(1): 22729, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123655

RESUMEN

FRET-based sensors are utilized for real-time measurements of cellular tension. However, transfection of the sensor gene shows low efficacy and is only effective for a short period. Reporter mice expressing such sensors have been developed, but sensor fluorescence has not been measured successfully using conventional confocal microscopy. Therefore, methods for spatiotemporal measurement of cellular tension in vivo or ex vivo are still limited. We established a reporter mouse line expressing FRET-based actinin tension sensors consisting of EGFP as the donor and mCherry as the acceptor and whose FRET ratio change is observable with confocal microscopy. Tension-induced changes in FRET signals were monitored in the aorta and tail tendon fascicles, as well as aortic smooth muscle cells isolated from these mice. The pattern of FRET changes was distinctive, depending on tissue type. Indeed, aortic smooth muscle cells exhibit different sensitivity to macroscopic tensile strain in situ and in an isolated state. This mouse strain will enable novel types of biomechanical investigations of cell functions in important physiological events.


Asunto(s)
Actinina , Transferencia Resonante de Energía de Fluorescencia , Ratones , Animales , Transferencia Resonante de Energía de Fluorescencia/métodos , Actinina/metabolismo , Línea Celular , Transfección , Microscopía Confocal
9.
Elife ; 122023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988289

RESUMEN

The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited. Here, we surveyed the temporal series of single-cell transcriptomes of progenitors regarding ferret corticogenesis and found a conserved diversity and temporal trajectory between human and ferret NPC, despite the large timescale difference. We found truncated RG (tRG) in ferret cortical development, a progenitor subtype previously described in humans. The combination of in silico and in vivo analyses identified that tRG differentiate into both ependymal and astrogenic cells. Via transcriptomic comparison, we predict that this is also the case in humans. Our findings suggest that tRG plays a role in the formation of adult ventricles, thereby providing the architectural bases for brain expansion.


Asunto(s)
Células Ependimogliales , Células-Madre Neurales , Animales , Humanos , Hurones , Encéfalo , Mamíferos
10.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37873155

RESUMEN

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.

11.
Cell Rep ; 42(8): 112954, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37595588

RESUMEN

During hibernation, some mammals show low body temperatures (<10°C). Tissues from hibernators exhibit cold resistance even when the animal is not hibernating. Mice can also enter hypothermic fasting-induced torpor (FIT), but the cold resistance of FIT has never been related to their tissues. Here, we show that an inbred mouse STM2 exhibits lower body temperature during FIT than C57BL/6J or MYS/Mz. Thus, STM2 resists the cold more than other strains. Analysis of strain-specific mouse embryonic stem (ES) cells shows that STM2 ES cells are more cold-resistant than others and rely on the oxidative phosphorylation (OXPHOS) pathway but respire independently of the electron transfer chain complex I in the cold. We also found that the liver of STM2 uses OXPHOS more in cold than other strains. This study demonstrates that an organismal phenotype associated with torpor can be effectively studied in an in vitro setup using mouse cells.

12.
Dev Biol ; 497: 26-32, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868446

RESUMEN

Reptiles are important model organisms in developmental and evolutionary biology, but are used less widely than other amniotes such as mouse and chicken. One of the main reasons for this is that has proven difficult to conduct CRISPR/Cas9-mediated genome editing in many reptile species despite the widespread use of this technology in other taxa. Certain features of reptile reproductive systems make it difficult to access one-cell or early-stage zygotes, which represents a key impediment to gene editing techniques. Recently, Rasys and colleagues reported a genome editing method using oocyte microinjection that allowed them to produce genome-edited Anolis lizards. This method opened a new avenue to reverse genetics studies in reptiles. In the present article, we report the development of a related method for genome editing in the Madagascar ground gecko (Paroedura picta), a well-established experimental model, and describe the generation of Tyr and Fgf10 gene-knockout geckos in the F0 generation.


Asunto(s)
Sistemas CRISPR-Cas , Lagartos , Animales , Ratones , Sistemas CRISPR-Cas/genética , Lagartos/genética , Microinyecciones , Genética Inversa , Edición Génica/métodos , Oocitos
13.
Methods Mol Biol ; 2637: 181-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773147

RESUMEN

In the CRISPR/Cas9-mediated gene cassette knockin (KI) strategy, a gene cassette is integrated into a target locus through a proper DNA repair pathway after the Cas9-induced double-strand DNA breaks; the activation of the DNA repair pathway is known to be correlated with the cell cycle. Recently, we have reported a new KI approach named SPRINT (S-phase pronuclear injection for targeting)-CRISPR, focusing on the correlation between the cell cycle and the KI efficiency in the mouse zygote microinjection. Our results suggest that the CRISPR-mediated KI with a homologous recombination-based donor vector during S-phase enhances the KI efficiency. For SPRINT-CRISPR, the uniformity of the zygotes in the cell cycle is achieved by in vitro fertilization, and the zygotes are cryopreserved until use. These reproductive techniques are necessary for efficient KI. Furthermore, Piezo-assisted microinjection has been successful in improving the survival rate of the injected embryos. In this chapter, we describe the protocols that focus on the zygote preparation and Piezo-assisted microinjection of the SPRINT-CRISPR method.


Asunto(s)
Sistemas CRISPR-Cas , Cigoto , Animales , Ratones , Cigoto/metabolismo , Sistemas CRISPR-Cas/genética , Microinyecciones/métodos , Recombinación Homóloga , Técnicas de Sustitución del Gen , ADN/genética , ADN/metabolismo
14.
Cell Rep ; 42(2): 111940, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719796

RESUMEN

Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.


Asunto(s)
Hígado , Lisofosfolipasa , Metionina , Fosfatidilcolinas , Animales , Ratones , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Hígado/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , S-Adenosilmetionina/metabolismo , Triglicéridos/metabolismo , Lisofosfolipasa/genética , Lisofosfolipasa/metabolismo , Fosfatidilcolinas/metabolismo
15.
iScience ; 26(1): 105766, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36582829

RESUMEN

Clustered protocadherin is a family of cell-surface recognition molecules implicated in neuronal connectivity that has a diverse isoform repertoire and homophilic binding specificity. Mice have 58 isoforms, encoded by Pcdhα, ß, and γ gene clusters, and mutant mice lacking all isoforms died after birth, displaying massive neuronal apoptosis and synapse loss. The current hypothesis is that the three specific γC-type isoforms, especially γC4, are essential for the phenotype, raising the question about the necessity of isoform diversity. We generated TC mutant mice that expressed the three γC-type isoforms but lacked all the other 55 isoforms. The TC mutants died immediately after birth, showing massive neuronal death, and γC3 or γC4 expression did not prevent apoptosis. Restoring the α- and ß-clusters with the three γC alleles rescued the phenotype, suggesting that along with the three γC-type isoforms, other isoforms are also required for the survival of neurons and individual mice.

16.
Nat Commun ; 13(1): 7194, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424386

RESUMEN

Exercise results in mechanical loading of the bone and stimulates energy expenditure in the adipose tissue. It is therefore likely that the bone secretes factors to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is known to be expressed in the bone, it is upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Here, we show that systemic IL-11 deletion (IL-11-/-) results in reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. At the same time, the enhancement of bone resorption by mechanical unloading was unaffected. Unexpectedly, IL-11-/- mice have increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice have reduced serum IL-11 levels, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11-/- mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre;IL-11fl/fl did not exhibit any abnormalities. We demonstrate that osteoblast/osteocyte-derived IL-11 controls both osteogenesis and systemic adiposity in response to mechanical loading, an important insight for our understanding of osteoporosis and metabolic syndromes.


Asunto(s)
Interleucina-11 , Osteocitos , Osteogénesis , Animales , Ratones , Adipogénesis , Interleucina-11/genética , Obesidad , Osteoblastos , Ratones Noqueados
17.
Front Cell Dev Biol ; 10: 929808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340044

RESUMEN

The epithalamus of zebrafish shows morphological and molecular left-right (L-R) asymmetry, but such asymmetry is not apparent in tetrapods. To provide further insight into the evolutionary diversity of brain L-R asymmetry, we have now examined the developing brains of reptile embryos for expression of Nodal, Lefty, and Pitx2. Two turtle species, the Chinese softshell turtle and the red-eared slider turtle, showed left-sided expression of these three genes in the developing forebrain, with this expression occurring after Nodal expression at the lateral plate and the L-R organizer has disappeared. Nodal activity, as revealed by the detection of phosphorylated Smad2/3, was also apparent in the neural epithelium on the left side in both turtle species. In the Chinese softshell turtle, the habenula did not show apparent asymmetry in size and the parapineal organ was absent, but the expression of Kctd12 in the habenula showed a small yet reproducible asymmetry. In contrast to the turtles, L-R asymmetric expression of Nodal, Lefty, Pitx2, or Kctd12 was not detected in the developing brain of the Madagascar ground gecko. The transcriptional enhancer (ASE) responsible for the asymmetric expression of Nodal, Lefty, and Pitx2 was conserved among reptiles, including the Chinese softshell turtle and Madagascar ground gecko. Our findings suggest that Nodal, Lefty, and Pitx2 have the potential to be asymmetrically expressed in the developing brain of vertebrates, but that their expression varies even among reptiles.

18.
PLoS Biol ; 20(10): e3001813, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36194579

RESUMEN

The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calcio , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Sueño
19.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162816

RESUMEN

Retrotransposon Gag-like 5 [RTL5, also known as sushi-ichi-related retrotransposon homolog 8 (SIRH8)] and RTL6 (also known as SIRH3) are eutherian-specific genes presumably derived from a retrovirus and phylogenetically related to each other. They, respectively, encode a strongly acidic and extremely basic protein, and are well conserved among the eutherians. Here, we report that RTL5 and RTL6 are microglial genes with roles in the front line of innate brain immune response. Venus and mCherry knock-in mice exhibited expression of RTL5-mCherry and RTL6-Venus fusion proteins in microglia and appeared as extracellular dots and granules in the central nervous system. These proteins display a rapid response to pathogens such as lipopolysaccharide (LPS), double-stranded (ds) RNA analog and non-methylated CpG DNA, acting both cooperatively and/or independently. Experiments using Rtl6 or Rtl5 knockout mice provided additional evidence that RTL6 and RTL5 act as factors against LPS and dsRNA, respectively, in the brain, providing the first demonstration that retrovirus-derived genes play a role in the eutherian innate immune system. Finally, we propose a model emphasizing the importance of extra-embryonic tissues as the origin site of retrovirus-derived genes. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Lipopolisacáridos , Retroviridae , Animales , Encéfalo/metabolismo , Euterios/genética , Humanos , Sistema Inmunológico , Inmunidad Innata/genética , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Microglía/metabolismo , ARN Bicatenario/metabolismo , Retroelementos/genética , Retroviridae/genética
20.
Dev Growth Differ ; 64(7): 379-394, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36057539

RESUMEN

When the regulation of axonal and dendritic growth is altered, the neuronal network becomes disordered, which may contribute to the development of psychiatric disorders. Some genome analyses have suggested relationships between mutations in strawberry notch homologue 1 (SBNO1) and neurodevelopmental disorders. However, the function of SBNO1 has not yet been reported. Here, SBNO1 expression pattern during the development of the cerebral cortex in mice was examined. SBNO1 was strongly expressed in the cortical plate and its expression was maintained at a low level during the postnatal stage. CRISPR/Cas9-based knockout of Sbno1 in Neuro2A cultured cells showed delayed growth of neurites. A cortical neuron-specific conditional knockout mouse was constructed, which resulted in hypotrophy of axon bundles and dendrites in cortical neurons. Thus, when mutated, SBNO1 is a candidate gene for psychiatric diseases, such as schizophrenia, as suggested by human genome studies.


Asunto(s)
Proyección Neuronal , Neuronas , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Humanos , Ratones , Ratones Noqueados , Neuritas/metabolismo , Proyección Neuronal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...