Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38869776

RESUMEN

Lyme arthritis, one of the possible late manifestations of Lyme borreliosis, predominantly affects the supporting joints and in adults most often occurs in the form of monoarthritis of the knee. Early diagnosis is based on clinical findings and serology. PCR detection of Borrelia in synovial fluid has become an integral part of the laboratory testing algorithm. The clinical presentation and inflammatory markers in Lyme arthritis can resemble septic arthritis. Determining the levels of alpha-defensins (human neutrophil peptide (HNP 1-3)) in synovial fluid by liquid chromatography is a highly sensitive method revealing the presence of inflammatory process. Between 2020 and 2022, we examined eleven patients with Lyme arthritis of the knee. We measured levels of HNP 1-3 from synovial fluid by HPLC in patients, and we compared it with the corresponding C-reactive protein (CRP) levels in paired serum samples. In patients diagnosed with Lyme arthritis, HNP 1-3 levels in synovial fluid ranged from 2.5 to 261 mg/L, with a median of 46.5 mg/L. Average serum CRP was 43 mg/L. The results show that elevated HNP 1-3 can be consistent with not only septic arthritis or systemic disease, but also with Lyme arthritis, especially in patients with negative culture and 16S PCR from synovial fluid. Final diagnosis must be verified by examination for anti-Borrelia antibodies from serum and synovial fluid. The aim of this work is to introduce an HPLC method for the determination of alpha-defensins as one of the possible diagnostic markers.

2.
Crit Rev Anal Chem ; : 1-30, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753964

RESUMEN

Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.

3.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35808019

RESUMEN

One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 µg/mL and 20 ± 5, 15 + 5, 15 + 5 µg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.

4.
NanoImpact ; 26: 100405, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35560289

RESUMEN

Quantum dots (QDs) are semi-conductor luminescent nanocrystals usually of 2-10 nm diameter, attracting the significant attention in biomedical studies since emerged. Due to their unique optical and electronic properties, i.e. wide absorption spectra, narrow tunable emission bands or stable, bright photoluminescence, QDs seem to be ideally suited for multi-colour, simultaneous bioimaging and cellular labeling at the molecular level as new-generation probes. A highly reactive surface of QDs allows for conjugating them to biomolecules, what enables their direct binding to areas of interest inside or outside the cell for biosensing or targeted delivery. Particularly protein-QDs conjugates are current subjects of research, as features of QDs can be combined with protein specific functionalities and therefore used as a complex in variety of biomedical applications. It is known that QDs are able to interact with cells, organelles and macromolecules of the human body after administration. QDs are reported to cause changes at proteins level, including unfolding and three-dimensional structure alterations which might hamper proteins from performing their physiological functions and thereby limit the use of QD-protein conjugates in vivo. Moreover, these changes may trigger unwanted cellular outcomes as the effect of different signaling pathways activation. In this review, characteristics of QDs interactions with certain human proteins are presented and discussed. Besides that, the following manuscript provides an overview on structural changes of specific proteins exposed to QDs and their biological and biomedical relevance.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Humanos , Luminiscencia , Nanopartículas/química , Puntos Cuánticos/química
5.
Pharmaceutics ; 14(1)2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35056998

RESUMEN

This study aimed to synthesise C60-DOX complexes followed by the analysis of their effect on the concentration of metallothionein (MT) as a non-enzymatic antioxidant and on the concentration and activity of superoxide dismutase (SOD) as an antioxidant enzyme in healthy human mammary MCF-10A cells. Dynamic light scattering and electrophoretic light scattering were used to establish the size and zeta potential of the complexes. The MT and SOD concentrations were determined using the ELISA method; SOD activity was determined by tetrazolium salt reduction inhibition. Lower MT concentration following exposure of cells to both DOX and C60 fullerene compared to the control sample was found. However, the concentration of this protein increased as a consequence of the C60-DOX complexes action on MCF-10A cells compared to the control. C60 used alone did not affect the concentration and activity of SOD in MCF-10A cells. Application of free DOX did not activate cellular antioxidant defence in the form of an increase in SOD concentration or its activity. In contrast treatment of cells with the C60-DOX complex resulted in a decrease in SOD1 concentration and a significant increase in SOD activity compared to cells treated with free DOX, C60 and control. Thus, it was found that C60-DOX complexes showed potential for protective effects against DOX-induced toxicity to MCF-10A cells.

6.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200401

RESUMEN

Quantum dots (QDs) have a broad range of applications in cell biolabeling, cancer treatment, metastasis imaging, and therapeutic drug monitoring. Despite their wide use, relatively little is known about their influence on other molecules. Interactions between QDs and proteins can influence the properties of both nanoparticles and proteins. The effect of mercaptosuccinic acid-capped CdTe QDs on intercellular copper-zinc superoxide dismutase (SOD1)-one of the main enzymatic antioxidants-was investigated. Incubation of SOD1 with QDs caused an increase in SOD1 activity, unlike in the case of CdCl2, which inhibited SOD1. Moreover, this effect on SOD1 increased with the size and potential of QDs, although the effect became clearly visible in higher concentrations of QDs. The intensity of QD-SOD1 fluorescence, analyzed with the use of capillary electrophoresis with laser-induced fluorescence detection, was dependent on SOD1 concentration. In the case of green QDs, the fluorescence signal decreased with increasing SOD1 concentration. In contrast, the signal strength for Y-QD complexes was not dependent on SOD1 dilutions. The migration time of QDs and their complexes with SOD1 varied depending on the type of QD used. The migration time of G-QD complexes with SOD1 differed slightly. However, in the case of Y-QD complexes with SOD1, the differences in the migration time were not dependent on SOD concentration. This research shows that QDs interact with SOD1 and the influence of QDs on SOD activity is size-dependent. With this knowledge, one might be able to control the activation/inhibition of specific enzymes, such as SOD1.


Asunto(s)
Compuestos de Cadmio/química , Electroforesis Capilar/métodos , Nanopartículas/química , Puntos Cuánticos , Superóxido Dismutasa/análisis , Telurio/química , Fluorescencia , Humanos , Espectrometría de Fluorescencia , Superóxido Dismutasa/metabolismo
7.
Chem Rec ; 21(1): 17-28, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33274843

RESUMEN

Polysaccharide nanoparticles are promising materials in the wide range of disciplines such as medicine, nutrition, food production, agriculture, material science and others. They excel not only in their non-toxicity and biodegradability but also in their easy preparation. As well as inorganic particles, a protein corona (PC) around polysaccharide nanoparticles is formed in biofluids. Moreover, it has been considered that the overall response of the organism to nanoparticles presence depends on the PC. This review summarises scientific publications about the structural chemistry of polysaccharide nanoparticles and their impact on theranostic applications. Three strategies of implementation of the PC in theranostics have been discussed: I) Utilisation of the PC in therapy; II) How the composition of the PC is analysed for specific disease markers; III) How the formed PC can interact with the immune system and enhances the immunomodulation or immunoelimination. Thus, the findings from this review can contribute to improve the design of drug delivery systems. However, it is still necessary to elucidate the mechanisms of nano-bio interactions and discover new connections in nanoscale research.


Asunto(s)
Nanopartículas/química , Polisacáridos/química , Corona de Proteínas , Nanomedicina Teranóstica/métodos , Adyuvantes Inmunológicos/uso terapéutico , Aterosclerosis/diagnóstico por imagen , Biomarcadores/análisis , Humanos , Inmunidad Humoral/efectos de los fármacos , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Polisacáridos/uso terapéutico , Corona de Proteínas/inmunología
8.
Pharmaceutics ; 12(9)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872234

RESUMEN

Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.

9.
Free Radic Biol Med ; 160: 149-162, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32745763

RESUMEN

The role of glutathione in autism spectrum disorder (ASD) is emerging as a major topic, due to its role in the maintenance of the intracellular redox balance. Several studies have implicated glutathione redox imbalance as a leading factor in ASD, and both ASD and many other neurodevelopmental disorders involve low levels of reduced glutathione (GSH), high levels of oxidized glutathione (GSSG), and abnormalities in the expressions of glutathione-related enzymes in the blood or brain. Glutathione metabolism, through its impact on redox environment or redox-independent mechanisms, interferes with multiple mechanisms involved in ASD pathogenesis. Glutathione-mediated regulation of glutamate receptors [e.g., N-methyl-d-aspartate (NMDA) receptor], as well as the role of glutamate as a substrate for glutathione synthesis, may be involved in the regulation of glutamate excitotoxicity. However, the interaction between glutathione and glutamate in the pathogenesis of brain diseases may vary from synergism to antagonism. Modulation of glutathione is also associated with regulation of redox-sensitive transcription factors nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) and downstream signaling (proinflammatory cytokines and inducible enzymes), thus providing a significant impact on neuroinflammation. Mitochondrial dysfunction, as well as neuronal apoptosis, may also provide a significant link between glutathione metabolism and ASD. Furthermore, it has been recently highlighted that glutathione can affect and modulate DNA methylation and epigenetics. Review analysis including research studies meeting the required criteria for analysis showed statistically significant differences between the plasma GSH and GSSG levels as well as GSH:GSSG ratio in autistic patients compared with healthy individuals (P = 0.0145, P = 0.0150 and P = 0.0202, respectively). Therefore, the existing data provide a strong background on the role of the glutathione system in ASD pathogenesis. Future research is necessary to investigate the role of glutathione redox signaling in ASD, which could potentially also lead to promising therapeutics.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo
10.
Animals (Basel) ; 10(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380764

RESUMEN

Marker-assisted selection based on fast and accurate molecular analysis of individual genes is considered an acceptable tool in the speed-up of the genetic improvement of production performance in chickens. The objective of this study was to detect the single nucleotide polymorphisms (SNPs) in the IGF1, IGFBP2 and TGFß3 genes, and to investigate their associations with growth performance (body weight (BW) and average daily gain (ADG) at 14, 21, 28, 35 and 42 days of age) and carcass traits in broilers. Performance (carcass) data (weight before slaughter; weights of the trunk, giblets, abdominal fat, breast muscle and thigh muscle; slaughter value and slaughter percentage), as well as blood samples for DNA extraction and SNP analysis, were obtained from 97 chickens belonging to two different lines (Hubbard F15 and Cobb E) equally divided between the two sexes. The genotypes were detected using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) methods with specific primers and restrictase for each gene. The statistical analysis discovered significant associations (p < 0.05) between the TGFß3 SNP and the following parameters: BW at 21, 28 and 35 days, trunk weight and slaughter value. Association analysis of BWs (at 21, 28 and 35 days) and SNPs was always significant for codominant, dominant and overdominant genetic models, showing a possible path for genomic selection in these chicken lines. Slaughter value was significant for codominant, recessive and overdominant patterns, whereas other carcass traits were not influenced by SNPs. Based on the results of this study, we suggested that the TGFß3 gene could be used as a candidate gene marker for chicken growth traits in the Hubbard F15 and Cobb E population selection programs, whereas for carcass traits further investigation is needed.

11.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365860

RESUMEN

The irradiance of ultraviolet (UV) radiation is a physical parameter that significantly influences biological molecules by affecting their molecular structure. The influence of UV radiation on nanoparticles has not been investigated much. In this work, the ability of cadmium telluride quantum dots (CdTe QDs) to respond to natural UV radiation was examined. The average size of the yellow QDs was 4 nm, and the sizes of green, red and orange QDs were 2 nm. Quantum yield of green CdTe QDs-MSA (mercaptosuccinic acid)-A, yellow CdTe QDs-MSA-B, orange CdTe QDs-MSA-C and red CdTe QDs-MSA-D were 23.0%, 16.0%, 18.0% and 7.0%, respectively. Green, yellow, orange and red CdTe QDs were replaced every day and exposed to daily UV radiation for 12 h for seven consecutive days in summer with UV index signal integration ranging from 1894 to 2970. The rising dose of UV radiation led to the release of cadmium ions and the change in the size of individual QDs. The shifts were evident in absorption signals (shifts of the absorbance maxima of individual CdTe QDs-MSA were in the range of 6-79 nm), sulfhydryl (SH)-group signals (after UV exposure, the largest changes in the differential signal of the SH groups were observed in the orange, green, and yellow QDs, while in red QDs, there were almost no changes), fluorescence, and electrochemical signals. Yellow, orange and green QDs showed a stronger response to UV radiation than red ones.

12.
Mol Neurobiol ; 57(5): 2314-2332, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32026227

RESUMEN

According to the United States Centers for Disease Control and Prevention (CDC), as of July 11, 2016, the reported average incidence of children diagnosed with an autism spectrum disorder (ASD) was 1 in 68 (1.46%) among 8-year-old children born in 2004 and living within the 11 monitoring sites' surveillance areas in the United States of America (USA) in 2012. ASD is a multifaceted neurodevelopmental disorder that is also considered a hidden disability, as, for the most part; there are no apparent morphological differences between children with ASD and typically developing children. ASD is diagnosed based upon a triad of features including impairment in socialization, impairment in language, and repetitive and stereotypic behaviors. The increasing incidence of ASD in the pediatric population and the lack of successful curative therapies make ASD one of the most challenging disorders for medicine. ASD neurobiology is thought to be associated with oxidative stress, as shown by increased levels of reactive oxygen species and increased lipid peroxidation, as well as an increase in other indicators of oxidative stress. Children with ASD diagnosis are considered more vulnerable to oxidative stress because of their imbalance in intracellular and extracellular glutathione levels and decreased glutathione reserve capacity. Several studies have suggested that the redox imbalance and oxidative stress are integral parts of ASD pathophysiology. As such, early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage. In this review, many aspects of the role of oxidative stress in ASD are discussed, taking into account that the process of oxidative stress may be a target for therapeutic interventions.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Estrés Oxidativo , Aerobiosis , Antioxidantes/metabolismo , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/fisiopatología , Química Encefálica , Sistema Nervioso Central/metabolismo , Niño , Preescolar , Disbiosis/complicaciones , Depuradores de Radicales Libres/metabolismo , Enfermedades Gastrointestinales/complicaciones , Microbioma Gastrointestinal , Glutatión Peroxidasa/metabolismo , Humanos , Incidencia , Peroxidación de Lípido , Metalotioneína/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Selenio/fisiología , Selenoproteínas/metabolismo
13.
Curr Med Chem ; 27(37): 6373-6383, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31533596

RESUMEN

Breast cancer is the most common neoplasm, comprising 16% of all women's cancers worldwide. Research of Copper (Cu) concentrations in various body specimens have suggested an association between Cu levels and breast cancer risks. This systematic review and meta-analysis summarize the results of published studies and examine this association. We searched the databases PubMed, Scopus, Web of Science, and Google Scholar and the reference lists of relevant publications. The Standardized Mean Differences (SMDs) between Cu levels in cancer cases and controls and corresponding Confidence Intervals (CIs), as well as I2 statistics, were calculated to examine heterogeneity. Following the specimens used in the original studies, the Cu concentrations were examined in three subgroups: serum or plasma, breast tissue, and scalp hair. We identified 1711 relevant studies published from 1984 to 2017. There was no statistically significant difference between breast cancer cases and controls for Cu levels assayed in any studied specimen; the SMD (95% CI) was -0.01 (-1.06 - 1.03; P = 0.98) for blood or serum, 0.51 (-0.70 - 1.73; P = 0.41) for breast tissue, and -0.88 (-3.42 - 1.65; P = 0.50) for hair samples. However, the heterogeneity between studies was very high (P < 0.001) in all subgroups. We did not find evidence for publication bias (P = 0.91). The results of this meta-analysis do not support an association between Cu levels and breast cancer. However, due to high heterogeneity in the results of original studies, this conclusion needs to be confirmed by well-designed prospective studies.


Asunto(s)
Neoplasias de la Mama , Cobre , Femenino , Cabello , Humanos , Estudios Prospectivos
14.
Crit Rev Food Sci Nutr ; 60(19): 3271-3289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31809581

RESUMEN

Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Vino , Embalaje de Alimentos , Nanotecnología , Vino/análisis
15.
Nanomaterials (Basel) ; 9(11)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683686

RESUMEN

AgNPs have attracted considerable attention in many applications including industrial use, and their antibacterial properties have been widely investigated. Due to the green synthesis process employed, the nanoparticle surface can be coated with molecules with biologically important characteristics. It has been reported that increased use of nanoparticles elevates the risk of their release into the environment. However, little is known about the behaviour of AgNPs in the eco-environment. In this study, the effect of green synthesized AgNPs on germinated plants of maize was examined. The effects on germination, basic growth and physiological parameters of the plants were monitored. Moreover, the effect of AgNPs was compared with that of Ag(I) ions in the form of AgNO3 solution. It was found that the growth inhibition of the above-ground parts of plants was about 40%, and AgNPs exhibited a significant effect on photosynthetic pigments. Significant differences in the following parameters were observed: weights of the caryopses and fresh weight (FW) of primary roots after 96 h of exposure to Ag(I) ions and AgNPs compared to the control and between Ag compounds. In addition, the coefficient of velocity of germination (CVG) between the control and the AgNPs varied and that between the Ag(I) ions and AgNPs was also different. Phytotoxicity was proved in the following sequence: control < AgNPs < Ag(I) ions.

16.
J Biol Chem ; 294(22): 8676-8689, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30975903

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.


Asunto(s)
Núcleo Celular/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Células 3T3-L1 , Acrilamidas/farmacología , Transporte Activo de Núcleo Celular , Animales , Puntos de Control del Ciclo Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Citoplasma/metabolismo , Células Hep G2 , Histonas/metabolismo , Humanos , Ratones , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/genética , Estrés Oxidativo , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sirtuinas/metabolismo
17.
Chem Rec ; 19(2-3): 502-522, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30156367

RESUMEN

Cancer represents one of the main causes of human death in developed countries. Most current therapies, unfortunately, carry a number of side effects, such as toxicity and damage to healthy cells, as well as the risk of resistance and recurrence. Therefore, cancer research is trying to develop therapeutic procedures with minimal negative consequences. The use of nanomaterial-based systems appears to be one of them. In recent years, great progress has been made in the field using nanomaterials with high potential in biomedical applications. Carbon nanomaterials, thanks to their unique physicochemical properties, are gaining more and more popularity in cancer therapy. They are valued especially for their ability to deliver drugs or small therapeutic molecules to these cells. Through surface functionalization, they can specifically target tumor tissues, increasing the therapeutic potential and significantly reducing the adverse effects of therapy. Their potential future use could, therefore, be as vehicles for drug delivery. This review presents the latest findings of research studies using carbon nanomaterials in the treatment of various types of cancer. To carry out this study, different databases such as Web of Science, PubMed, MEDLINE and Google Scholar were employed. The findings of research studies chosen from more than 2000 viewed scientific publications from the last 15 years were compared.


Asunto(s)
Antineoplásicos/uso terapéutico , Carbono/química , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Puntos Cuánticos/química , Animales , Humanos
18.
J Nanosci Nanotechnol ; 19(5): 2483-2488, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30501743

RESUMEN

Modern anticancer therapy aims to increase the effectiveness of tumor treatment. The aim of this work was to propose a new nanotransporter for targeted delivery of anthracycline antibiotics, which is characterized by its bioavailability, increased uptake of the drug from the bloodstream at the site of the tumor tissue as well as low toxicity to non-target tissue. Chitosan nanoparticles have attracted great attention in the field of drug delivery due to their stability, low toxicity and easy preparation. Deacetylated chitosan skeleton is composed of glucosamine units and has a high density of charged amino groups which allow strong electrostatic interactions with biomolecules, transition metals (Zn, Se) and peptides. We obtained an effective level of chitosan encapsulation, 20%. Electrochemical detection of the bounded Zn2+ ions into the chitosan structure showed a potential shift from -0.99 to -0.93 V. This result proved the formation of a chitosan-zinc complex. The ability of metallothione to quench the 2,2-diphenyl-1-picrylhydrazyl radical in the presence of 50 µM doxorubicin was confirmed by the change of relative absorbance over the range from 50 to 60%.


Asunto(s)
Antineoplásicos , Quitosano , Nanopartículas , Preparaciones Farmacéuticas , Antibióticos Antineoplásicos , Doxorrubicina/farmacología , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Zinc
19.
J Nanosci Nanotechnol ; 19(5): 2762-2769, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30501777

RESUMEN

Silver nanoparticles are the most important nanoparticles in connection with the antimicrobial effect. Nowadays, the green synthesis of various types of nanoparticles is rapid, effective and produce less toxic nanoparticles often with specific properties. In our experiment we have developed and described in details various types of silver nanoparticles synthesized chemically or by the green synthesis. Nine different silver nanoparticles were synthesized, three by citrate method at different pHs (8; 9; 10), four using gallic acid at alkaline pHs (10; 11), and two by green synthesis using green tea and coffee extracts, both at pH 9. Characterisation of silver nanoparticles was performed using dynamic light scattering, scanning electron microscopy, and ultraviolet-visible absorption spectroscopy. Silver nanoparticles prepared by green synthesis showed the highest antioxidant activity and also ability for quenching of free radicals. Antibacterial activity of silver nanoparticles was determined on bacterial cultures such as Staphylococcus aureus and Escherichia coli. Silver nanoparticles synthesized using green tea and coffee extracts showed the highest antibacterial activity for both bacterial strains. Minimal inhibition concentration for both strains was found to be 65 µM at each silver nanoparticle synthesized using green synthesis.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Tecnología Química Verde , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata/farmacología
20.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467297

RESUMEN

BACKGROUND: Sarcosine is an amino acid that is formed by methylation of glycine and is present in trace amounts in the body. Increased sarcosine concentrations in blood plasma and urine are manifested in sarcosinemia and in some other diseases such as prostate cancer. For this purpose, sarcosine detection using the nanomedicine approach was proposed. In this study, we have prepared superparamagnetic iron oxide nanoparticles (SPIONs) with different modified surface area. Nanoparticles (NPs) were modified by chitosan (CS), and sarcosine oxidase (SOX). SPIONs without any modification were taken as controls. Methods and Results: The obtained NPs were characterized by physicochemical methods. The size of the NPs determined by the dynamic light scattering method was as follows: SPIONs/Au/NPs (100⁻300 nm), SPIONs/Au/CS/NPs (300⁻700 nm), and SPIONs/Au/CS/SOX/NPs (600⁻1500 nm). The amount of CS deposited on the NP surface was found to be 48 mg/mL for SPIONs/Au/CS/NPs and 39 mg/mL for SPIONs/Au/CS/SOX/NPs, and repeatability varied around 10%. Pseudo-peroxidase activity of NPs was verified using sarcosine, horseradish peroxidase (HRP) and 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. For TMB, all NPs tested evinced substantial pseudo-peroxidase activity at 650 nm. The concentration of SPIONs/Au/CS/SOX/NPs in the reaction mixture was optimized to 0⁻40 mg/mL. Trinder reaction for sarcosine detection was set up at 510 nm at an optimal reaction temperature of 37 °C and pH 8.0. The course of the reaction was linear for 150 min. The smallest amount of NPs that was able to detect sarcosine was 0.2 mg/well (200 µL of total volume) with the linear dependence y = 0.0011x - 0.0001 and the correlation coefficient r = 0.9992, relative standard deviation (RSD) 6.35%, limit of detection (LOD) 5 µM. The suggested method was further validated for artificial urine analysis (r = 0.99, RSD 21.35%, LOD 18 µM). The calculation between the detected and applied concentrations showed a high correlation coefficient (r = 0.99). NPs were tested for toxicity and no significant growth inhibition was observed in any model system (S. cerevisiae, S. aureus, E. coli). The hemolytic activity of the prepared NPs was similar to that of the phosphate buffered saline (PBS) control. The reaction system was further tested on real urine specimens. Conclusion: The proposed detection system allows the analysis of sarcosine at micromolar concentrations and to monitor changes in its levels as a potential prostate cancer marker. The whole system is suitable for low-cost miniaturization and point-of-care testing technology and diagnostic systems. This system is simple, inexpensive, and convenient for screening tests and telemedicine applications.


Asunto(s)
Biomarcadores de Tumor/orina , Quitosano/química , Nanopartículas de Magnetita/química , Neoplasias de la Próstata/diagnóstico , Sarcosina-Oxidasa/química , Sarcosina/orina , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Compuestos Férricos/química , Oro/química , Hemólisis/efectos de los fármacos , Peroxidasa de Rábano Silvestre/química , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Nanopartículas de Magnetita/ultraestructura , Masculino , Oxidación-Reducción , Tamaño de la Partícula , Medicina de Precisión , Neoplasias de la Próstata/orina , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...