Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Persoonia ; 38: 38-57, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29151626

RESUMEN

Based on molecular and morphological data we investigated the taxonomy and phylogeny of the ectomycorrhizal genus Tricholoma in northern Europe. Our phylogenetic tree confirmed the presence of at least 72 well circumscribed species within the region. Of these, three species, viz. T. boreosulphurescens, T. bryogenum and T. ilkkae are described as new to science, based on morphological, distributional, ecological and molecular data. Several other terminal branches represent putative cryptic taxa nested within classical species or species groups. Molecular type studies and/or designation of sequenced neotypes are needed in these groups, before the taxonomy can be settled. In general our phylogenetic analysis supported previous suprageneric classification systems, but with some substantial changes. Most notably, T. virgatum and allies were found to belong to sect. Tricholoma rather than sect. Atrosquamosa, while T. focale was found to be clearly nested in sect. Genuina rather than in sect. Caligata. In total, ten sections are accepted, with five species remaining unassigned. The combination of morphological and molecular data showed pileus colour, pileipellis structure, presence of clamp connections and spore size to be rather conservative characters within accepted sections, while the presence of a distinct ring, and especially host selection were highly variable within these.

2.
Mol Ecol ; 10(8): 2089-93, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11555252

RESUMEN

The mitochondrial ribosomal large subunit (Ls) DNA was used to identify the orchid mycorrhizal fungi found in roots of Dactylorhiza majalis. The gene was amplified using DNA extracted from single pelotons obtained from fresh and silica gel dried roots. Furthermore, sequencing a variety of well-characterized orchid isolates expanded the fungal database of the mitochondrial ribosomal LsDNA. Polymerase chain reaction product length variants present in D. majalis were sequenced and identified using the expanded database. These analyses revealed two different peloton-forming fungi in samples from D. majalis, which sometimes occurred together as a single two-taxa peloton within the same cortex cell. The first taxon belonged to the genus Tulasnella and the second taxon was distantly related to Laccaria.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/genética , ADN Mitocondrial/genética , Orchidaceae/microbiología , Raíces de Plantas/microbiología , ADN de Hongos/análisis , ADN de Hongos/genética , ADN Mitocondrial/análisis , Proteínas Fúngicas/genética , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Proteínas Ribosómicas/genética
3.
Phytopathology ; 88(9): 992-6, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18944878

RESUMEN

ABSTRACT To describe the disease cycle of the root pathogen Aphanomyces euteiches, enzymatic activity in the mycelium was compared with the development of oospores in pea roots. Plants were inoculated with two zoospore concentrations to achieve different disease levels. Hyphae were stained for fungal alkaline phosphatase activity in the roots. Additionally, enzyme activity was measured after electrophoresis of an A. euteiches-specific glucose-6-phosphate isozyme. Development of oospores in the roots was measured after staining the oospores with trypan blue. In plants inoculated with the higher zoospore concentration, the enzymatic activity of the pathogen mycelium peaked 10 to 14 days after inoculation, when oospore formation was initiated. Oospore formation was associated with a gradual increase in disease symptoms. At the last harvest, plants inoculated with the higher zoospore concentration had died. In these plants, oospores were found in 90% of the root length, while the enzymatic activity of the mycelium was low. This suggests that the pathogen mycelium is only active on living plants and does not grow saprophytically on dead plant material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA