Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(42): 12997-3002, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26417090

RESUMEN

Cold-water conditions have excluded durophagous (skeleton-breaking) predators from the Antarctic seafloor for millions of years. Rapidly warming seas off the western Antarctic Peninsula could now facilitate their return to the continental shelf, with profound consequences for the endemic fauna. Among the likely first arrivals are king crabs (Lithodidae), which were discovered recently on the adjacent continental slope. During the austral summer of 2010 ‒ 2011, we used underwater imagery to survey a slope-dwelling population of the lithodid Paralomis birsteini off Marguerite Bay, western Antarctic Peninsula for environmental or trophic impediments to shoreward expansion. The population density averaged ∼ 4.5 individuals × 1,000 m(-2) within a depth range of 1,100 ‒ 1,500 m (overall observed depth range 841-2,266 m). Images of juveniles, discarded molts, and precopulatory behavior, as well as gravid females in a trapping study, suggested a reproductively viable population on the slope. At the time of the survey, there was no thermal barrier to prevent the lithodids from expanding upward and emerging on the outer shelf (400- to 550-m depth); however, near-surface temperatures remained too cold for them to survive in inner-shelf and coastal environments (<200 m). Ambient salinity, composition of the substrate, and the depth distribution of potential predators likewise indicated no barriers to expansion of lithodids onto the outer shelf. Primary food resources for lithodids--echinoderms and mollusks--were abundant on the upper slope (550-800 m) and outer shelf. As sea temperatures continue to rise, lithodids will likely play an increasingly important role in the trophic structure of subtidal communities closer to shore.


Asunto(s)
Crustáceos/fisiología , Animales , Regiones Antárticas , Cambio Climático , Femenino , Masculino , Dinámica Poblacional , Conducta Sexual Animal
2.
Biol Lett ; 8(3): 438-41, 2012 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-22158738

RESUMEN

Small cruising zooplankton depend on remote prey detection and active prey capture for efficient feeding. Direct, passive interception of prey is inherently very inefficient at low Reynolds numbers because the viscous boundary layer surrounding the approaching predator will push away potential prey. Yet, direct interception has been proposed to explain how rapidly cruising, blind copepods feed on non-motile phytoplankton prey. Here, we demonstrate a novel mechanism for prey detection in a cruising copepod, and describe how motile and non-motile prey are discovered by hydromechanical and tactile or, likely, chemical cues, respectively.


Asunto(s)
Copépodos/fisiología , Animales , Señales (Psicología) , Dinoflagelados/fisiología , Femenino , Groenlandia , Procesamiento de Imagen Asistido por Computador , Percepción Olfatoria , Conducta Predatoria , Percepción del Tacto , Grabación de Cinta de Video , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...