Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 258: 104230, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481897

RESUMEN

Surfactant-enhanced in-situ chemical oxidation (S-ISCO) is an emerging innovative remediation technology for the treatment of dense non-aqueous phase liquids (DNAPLs). S-ISCO combines the solubilization of contaminants by means of surfactants with the chemical oxidation by an oxidizing agent, thus, potentially increasing the efficiency of the state-of-the-art ISCO technique. Scientific investigations are needed to enable the technology transfer for potential field applications based on the development of a remediation design under well-defined boundary conditions. For this purpose, experimental upscaling analyses were performed using the special infrastructure of the research facility for subsurface remediation (VEGAS). Batch tests showed that oxidation of the selected surfactant E-Mulse 3® (EM3) by activated persulfate (Na-PS) reduced the solubilization of the model contaminants 1,4-DCB, naphthalene, and PCE. As a consequence, the processes of contaminant solubilization and degradation were temporally and spatially separated in the developed remediation design. A proof of concept was provided by performing an S-ISCO medium-scale experiment (100 cm length, 70 cm height, 12.5 cm width), with 1,2-DCB as model DNAPL contaminant to be treated. A groundwater circulation well (GCW) was used to inject a 60 g/L Na-PS solution and to effectively mix the reagents. Sampling of the experiment's outflow and the soil material after treatment showed that neither rebound effects nor residual mass loadings on the soil material could be detected after termination of the S-ISCO treatment. To further evaluate the S-ISCO remediation design under field-like conditions, a large-scale S-ISCO experiment was conducted (6 m length, 3 m height, 1 m width), allowing for an extensive sampling campaign to monitor relevant processes. An efficient contaminant removal from the former source zone could be reached by surfactant solubilization, decreasing contaminant levels from initially over 2000 mg/L 1,2-DCB to final concentrations below 5 mg/L 1,2-DCB. The heterogeneously distributed contaminant degradation, implemented by a three-filter GCW, was attributed to density-induced migration processes that impeded an optimal reaction zone. A density-dependent numerical transport could qualitatively match the observations. By comparing different simulation scenarios, an adapted operation of the GCW was established that provides for a more efficient distribution of the density-influenced oxidant injection.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Tensoactivos , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Oxidantes , Suelo/química , Agua Subterránea/química
2.
Sci Rep ; 13(1): 5650, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024513

RESUMEN

Ciliates are abundant unicellular organisms capable of resisting high concentrations of metal ions in the environment caused by various anthropogenic activities. Understanding the cellular pathways involved in resistance to and detoxification of elements is required to predict the impact of ciliates on environmental element cycles. Here, we investigated the so far unknown process of tolerance, cellular uptake and bioaccumulation of the emerging rare earth element gadolinium (Gd) in the common ciliate Tetrahymena pyriformis. Gd treatment results in the intracellular formation and excretion of biogenic Gd-containing particles. This cellular process effectively removes dissolved Gd from the organic growth medium by 53.37% within 72 h. Based on light and electron microscopic observations, we postulate a detoxification pathway: Cells take up toxic Gd3+ ions from the medium by endocytosis, process them into stable Gd-containing particles within food vacuoles, and exocytose them. Stable biogenic particles can be isolated, which are relatively homogeneous and have a diameter of about 3 µm. They consist of the elements Gd, C, O, P, Na, Mg, K, and Ca. These findings broaden the view of metal ion accumulation by protists and are of relevance to understand environmental elemental cycles and may inspire approaches for metal recovery or bioremediation.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Gadolinio/toxicidad , Bioacumulación , Contaminantes Químicos del Agua/análisis , Iones
3.
Sci Total Environ ; 876: 162588, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36871732

RESUMEN

The evaluation of PFAS immobilization performance in laboratory experiments, especially the long-term stability, is a challenge. To contribute to the development of adequate experimental procedures, the impact of experimental conditions on the leaching behavior was studied. Three experiments on different scales were compared: batch, saturated column, and variably saturated laboratory lysimeter experiments. The Infinite Sink (IS) test - a batch test with repeated sampling - was applied for PFAS for the first time. Soil from an agricultural field amended with paper-fiber biosolids polluted with various perfluoroalkyl acids (PFAAs; 655 µg/kg ∑18PFAAs) and polyfluorinated precursors (1.4 mg/kg ∑18precursors) was used as the primary material (N-1). Two types of PFAS immobilization agents were tested: treatment with activated carbon-based additives (soil mixtures: R-1 and R-2), and solidification with cement and bentonite (R-3). In all experiments, a chain-length dependent immobilization efficacy is observed. In R-3, the leaching of short-chain PFAAs was enhanced relative to N-1. In column and lysimeter experiments with R-1 and R-2, delayed breakthrough of short-chain PFAAs (C4) occurred (> 90 days; in column experiments at liquid-to-solid ratio (LS) > 30 L/kg) with similar temporal leaching rates suggesting that leaching in these cases was a kinetically controlled process. Observed differences between column and lysimeter experiments may be attributed to varying saturation conditions. In IS experiments, PFAS desorption from N-1, R-1, and R-2 is higher than in the column experiments (N-1: +44 %; R-1: +280 %; R-2: +162 %), desorption of short-chain PFAS occurred predominantly in the initial phase (< 14 days). Our findings demonstrate that sufficient operating times are essential in percolation experiments, e.g., in column experiments >100 days and LS > 30 L/kg. IS experiments may provide a faster estimate for nonpermanent immobilization. The comparison of experimental data from various experiments is beneficial to evaluate PFAS immobilization and to interpret leaching characteristics.

4.
Environ Sci Technol ; 49(9): 5593-600, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25884287

RESUMEN

The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.


Asunto(s)
Conductividad Eléctrica , Restauración y Remediación Ambiental , Agua Subterránea/química , Imagenología Tridimensional , Hierro/química , Bélgica , Hidrocarburos Clorados/análisis , Soluciones
5.
J Contam Hydrol ; 164: 88-99, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24963597

RESUMEN

A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56µm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Galactanos/química , Hierro/química , Mananos/química , Gomas de Plantas/química , Tricloroetanos/química , Contaminantes Químicos del Agua/química , Bélgica , Agua Subterránea , Proyectos Piloto , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...