Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Digit Health ; 5: 1304089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38351963

RESUMEN

Background: Mobile e-health technologies have proven to provide tailored assessment, intervention, and coaching capabilities for various usage scenarios. Thanks to their spread and adoption, smartphones are one of the most important carriers for such applications. Problem: However, the process of design, realization, evaluation, and implementation of these e-health solutions is wicked and challenging, requiring multiple stakeholders and expertise. Method: Here, we present a tailorable intervention and interaction e-health solution that allows rapid prototyping, development, and evaluation of e-health interventions at scale. This platform allows researchers and clinicians to develop ecological momentary assessment, just-in-time adaptive interventions, ecological momentary intervention, cohort studies, and e-coaching and personalized interventions quickly, with no-code, and in a scalable way. Result: The Twente Intervention and Interaction Instrument (TIIM) has been used by over 320 researchers in the last decade. We present the ecosystem and synthesize the main scientific output from clinical and research studies in different fields. Discussion: The importance of mobile e-coaching for prediction, management, and prevention of adverse health outcomes is increasing. A profound e-health development strategyand strategic, technical, and operational investments are needed to prototype, develop, implement, and evaluate e-health solutions. TIIM ecosystem has proven to support these processes. This paper ends with the main research opportunities in mobile coaching, including intervention mechanisms, fine-grained monitoring, and inclusion of objective biomarker data.

2.
J Equine Vet Sci ; 78: 20-28, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31203980

RESUMEN

Asymmetric forces exerted on the horse's back during riding are assumed to have a negative effect on rider-horse interaction, athletic performance, and health of the horse. Visualized on a saddle pressure mat, they are initially blamed on a nonfitting saddle. The contribution of horse and rider to an asymmetric loading pattern, however, is not well understood. The aim of this study was to investigate the effects of horse and rider asymmetries during stance and in sitting trot on the force distribution on the horse's back using a saddle pressure mat and motion capture analysis simultaneously. Data of 80 horse-rider pairs (HRP) were collected and analyzed using linear (mixed) models to determine the influence of rider and horse variables on asymmetric force distribution. Results showed high variation between HRP. Both rider and horse variables revealed significant relationships to asymmetric saddle force distribution (P < .001). During sitting trot, the collapse of the rider in one hip increased the force on the contralateral side, and the tilt of the rider's upper body to one side led to more force on the same side of the pressure mat. Analyzing different subsets of data revealed that rider posture as well as horse movements and conformation can cause an asymmetric force distribution. Because neither horse nor rider movement can be assessed independently during riding, the interpretation of an asymmetric force distribution on the saddle pressure mat remains challenging, and all contributing factors (horse, rider, saddle) need to be considered.


Asunto(s)
Dorso , Sedestación , Animales , Fenómenos Biomecánicos , Caballos , Movimiento , Postura
3.
Artículo en Inglés | MEDLINE | ID: mdl-29707537

RESUMEN

BACKGROUND: Upper-limb impairments in stroke patients are usually measured in clinical setting using standard clinical assessment. In addition, kinematic analysis using opto-electronic systems has been used in the laboratory setting to map arm recovery. Such kinematic measurements cannot capture the actual function of the upper extremity in daily life. The aim of this study is to longitudinally explore the complementarity of post-stroke upper-limb recovery measured by standard clinical assessments and daily-life recorded kinematics. METHODS: The study was designed as an observational, single-group study to evaluate rehabilitation progress in a clinical and home environment, with a full-body sensor system in stroke patients. Kinematic data were recorded with a full-body motion capture suit during clinical assessment and self-directed activities of daily living. The measurements were performed at three time points for 3 h: (1) 2 weeks before discharge of the rehabilitation clinic, (2) right after discharge, and (3) 4 weeks after discharge. The kinematic analysis of reaching movements uses the position and orientation of each body segment to derive the joint angles. Newly developed metrics for classifying activity and quality of upper extremity movement were applied. RESULTS: The data of four stroke patients (three mildly impaired, one sever impaired) were included in this study. The arm motor function assessment improved during the inpatient rehabilitation, but declined in the first 4 weeks after discharge. A change in the data (kinematics and new metrics) from the daily-life recording was seen in in all patients. Despite this worsening patients increased the number of reaches they performed during daily life in their home environment. CONCLUSION: It is feasible to measure arm kinematics using Inertial Measurement Unit sensors during daily life in stroke patients at the different stages of rehabilitation. Our results from the daily-life recordings complemented the data from the clinical assessments and illustrate the potential to identify stroke patient characteristics, based on kinematics, reaching counts, and work area. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov, identifier NCT02118363.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28421180

RESUMEN

BACKGROUND: Inertial motion capture systems are used in many applications such as measuring the movement quality in stroke survivors. The absence of clinical effectiveness and usability evidence in these assistive technologies into rehabilitation has delayed the transition of research into clinical practice. Recently, a new inertial motion capture system was developed in a project, called INTERACTION, to objectively measure the quality of movement (QoM) in stroke survivors during daily-life activity. With INTERACTION, we are to be able to investigate into what happens with patients after discharge from the hospital. Resulting QoM metrics, where a metric is defined as a measure of some property, are subsequently presented to care professionals. Metrics include for example: reaching distance, walking speed, and hand distribution plots. The latter shows a density plot of the hand position in the transversal plane. The objective of this study is to investigate the opinions of care professionals in using these metrics obtained from INTERACTION and its usability. METHODS: By means of a semi-structured interview, guided by a presentation, presenting two patient reports. Each report includes several QoM metric (like reaching distance, hand position density plots, shoulder abduction) results obtained during daily-life measurements and in clinic and were evaluated by care professionals not related to the project. The results were compared with care professionals involved within the INTERACTION project. Furthermore, two questionnaires (5-point Likert and open questionnaire) were handed over to rate the usability of the metrics and to investigate if they would like such a system in their clinic. RESULTS: Eleven interviews were conducted, where each interview included either two or three care professionals as a group, in Switzerland and The Netherlands. Evaluation of the case reports (CRs) by participants and INTERACTION members showed a high correlation for both lower and upper extremity metrics. Participants were most in favor of hand distribution plots during daily-life activities. All participants mentioned that visualizing QoM of stroke survivors over time during daily-life activities has more possibilities compared to current clinical assessments. They also mentioned that these metrics could be important for self-evaluation of stroke survivors. DISCUSSION: The results showed that most participants were able to understand the metrics presented in the CRs. For a few metrics, it remained difficult to assess the underlying cause of the QoM. Hence, a combination of metrics is needed to get a better insight of the patient. Furthermore, it remains important to report the state (e.g., how the patient feels), its surroundings (outside, inside the house, on a slippery surface), and detail of specific activities (does the patient grasps a piece of paper or a heavy cooking pan but also dual tasks). Altogether, it remains a questions how to determine what the patient is doing and where the patient is doing his or her activities.

5.
Artículo en Inglés | MEDLINE | ID: mdl-28180128

RESUMEN

BACKGROUND: To increase the functional capabilities of stroke subjects during activities of daily living, patients receive rehabilitative training to recover adequate motor control. With the goal to motivate self-training by use of the arm in daily life tasks, a sensor system (Arm Usage Coach, AUC) was developed that provides VibroTactile (VT) feedback if the patient does not move the affected arm above a certain threshold level. The objective of this study is to investigate the usability of this system in stroke subjects. METHOD: The study was designed as a usability and user acceptance study of feedback modalities. Stroke subjects with mild to moderate arm impairments were enrolled. The subjects wore two AUC devices one on each wrist. VT feedback was given by the device on the affected arm. A semi-structured interview was performed before and after a measurement session with the AUC. In addition, the System Usability Scale (SUS) questionnaire was given. RESULTS: Ten ischemic chronic stroke patients (39 ± 38 months after stroke) were recruited. Four out of 10 subjects have worn the VT feedback on their dominant, affected arm. In the pre-measurement interview, eight participants indicated a preference for acoustic or visual over VT feedback. In the post evaluation interview, nine of 10 participants preferred VT over visual and acoustic feedback. On average, the AUC gave VT feedback six times during the measurement session. All participants, with the exception of one, used their dominant arm more then the non-dominant. For the SUS, eight participants responded above 80%, one between 70 and 80%, and one participant responded below 50%. DISCUSSION: More patients accepted and valued VT feedback after the test period, hence VT is a feasible feedback modality. The AUC can be used as a telerehabilitation device to train and maintain upper extremity use in daily life tasks.

6.
Artículo en Inglés | MEDLINE | ID: mdl-26793705

RESUMEN

BACKGROUND: Stroke survivors are commonly left with disabilities that impair activities of daily living. The main objective of their rehabilitation program is to maximize the functional performance at home. However, the actual performance of patients in their home environment is unknown. Therefore, objective evaluation of daily life activities of stroke survivors in their physical interaction with the environment is essential for optimal guidance of rehabilitation therapy. Monitoring daily life movements could be very challenging, as it may result in large amounts of data, without any context. Therefore, suitable metrics are necessary to quantify relevant aspects of movement performance during daily life. The objective of this study is to develop data processing methods, which can be used to process movement data into relevant metrics for the evaluation of intra-patient differences in quality of movements in a daily life setting. METHODS: Based on an iterative requirement process, functional and technical requirements were formulated. These were prioritized resulting in a coherent set of metrics. An activity monitor was developed to give context to captured movement data at home. Finally, the metrics will be demonstrated in two stroke participants during and after their rehabilitation phases. RESULTS: By using the final set of metrics, quality of movement can be evaluated in a daily life setting. As example to demonstrate potential of presented methods, data of two stroke patients were successfully analyzed. Differences between in-clinic measurements and measurements during daily life are observed by applying the presented metrics and visualization methods. Heel height profiles show intra-patient differences in height, distance, stride profile, and variability between strides during a 10-m walk test in the clinic and walking at home. Differences in distance and stride profile between both feet were larger at home, than in clinic. For the upper extremities, the participant was able to reach further away from the pelvis and cover a larger area. DISCUSSION: Presented methods can be used for the objective evaluation of intra-patient differences in movement quality between in-clinic and daily life measurements. Any observed progression or deterioration of movement quality could be used to decide on continuing, stopping, or adjusting rehabilitation programs.

7.
Front Hum Neurosci ; 6: 325, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226126

RESUMEN

Recent theoretical advances on the topic of body representations have raised the question whether spatial perception of touch and nociception involve the same representations. Various authors have established that subjective localizations of touch and nociception are displaced in a systematic manner. The relation between veridical stimulus locations and localizations can be described in the form of a perceptual map; these maps differ between subjects. Recently, evidence was found for a common set of body representations to underlie spatial perception of touch and slow and fast pain, which receive information from modality specific primary representations. There are neurophysiological clues that the various cutaneous senses may not share the same primary representation. If this is the case, then differences in primary representations between touch and nociception may cause subject-dependent differences in perceptual maps of these modalities. We studied localization of tactile and nociceptive sensations on the forearm using electrocutaneous stimulation. The perceptual maps of these modalities differed at the group level. When assessed for individual subjects, the differences localization varied in nature between subjects. The agreement of perceptual maps of the two modalities was moderate. These findings are consistent with a common internal body representation underlying spatial perception of touch and nociception. The subject level differences suggest that in addition to these representations other aspects, possibly differences in primary representation and/or the influence of stimulus parameters, lead to differences in perceptual maps in individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...