Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1297589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035108

RESUMEN

MICA is a stress-induced ligand of the NKG2D receptor that stimulates NK and T cell responses and was identified as a key determinant of anti-tumor immunity. The MICA gene is located inside the MHC complex and is in strong linkage disequilibrium with HLA-B. While an HLA-B*48-linked MICA deletion-haplotype was previously described in Asian populations, little is known about other MICA copy number variations. Here, we report the genotyping of more than two million individuals revealing high frequencies of MICA duplications (1%) and MICA deletions (0.4%). Their prevalence differs between ethnic groups and can rise to 2.8% (Croatia) and 9.2% (Mexico), respectively. Targeted sequencing of more than 70 samples indicates that these copy number variations originate from independent nonallelic homologous recombination events between segmental duplications upstream of MICA and MICB. Overall, our data warrant further investigation of disease associations and consideration of MICA copy number data in oncological study protocols.


Asunto(s)
Variaciones en el Número de Copia de ADN , Antígenos de Histocompatibilidad Clase I , Humanos , Frecuencia de los Genes , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA-B/genética , Polimorfismo Genético
2.
BMC Bioinformatics ; 22(1): 236, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971817

RESUMEN

BACKGROUND: High resolution HLA genotyping of donors and recipients is a crucially important prerequisite for haematopoetic stem-cell transplantation and relies heavily on the quality and completeness of immunogenetic reference sequence databases of allelic variation. RESULTS: Here, we report on DR2S, an R package that leverages the strengths of two sequencing technologies-the accuracy of next-generation sequencing with the read length of third-generation sequencing technologies like PacBio's SMRT sequencing or ONT's nanopore sequencing-to reconstruct fully-phased high-quality full-length haplotype sequences. Although optimised for HLA and KIR genes, DR2S is applicable to all loci with known reference sequences provided that full-length sequencing data is available for analysis. In addition, DR2S integrates supporting tools for easy visualisation and quality control of the reconstructed haplotype to ensure suitability for submission to public allele databases. CONCLUSIONS: DR2S is a largely automated workflow designed to create high-quality fully-phased reference allele sequences for highly polymorphic gene regions such as HLA or KIR. It has been used by biologists to successfully characterise and submit more than 500 HLA alleles and more than 500 KIR alleles to the IPD-IMGT/HLA and IPD-KIR databases.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Alelos , Genotipo , Antígenos HLA , Haplotipos
3.
Genome Biol Evol ; 12(7): 1099-1188, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442304

RESUMEN

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.


Asunto(s)
Especiación Genética , Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Himenópteros/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Elementos Transponibles de ADN , Femenino , Dosificación de Gen , Glicoproteínas/genética , Herbivoria/genética , Inmunidad/genética , Proteínas de Insectos/genética , Masculino , Familia de Multigenes , Receptores Odorantes/genética , Conducta Social , Visión Ocular/genética
4.
BMC Evol Biol ; 20(1): 30, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32059645

RESUMEN

BACKGROUND: Modularity is important for evolutionary innovation. The recombination of existing units to form larger complexes with new functionalities spares the need to create novel elements from scratch. In proteins, this principle can be observed at the level of protein domains, functional subunits which are regularly rearranged to acquire new functions. RESULTS: In this study we analyse the mechanisms leading to new domain arrangements in five major eukaryotic clades (vertebrates, insects, fungi, monocots and eudicots) at unprecedented depth and breadth. This allows, for the first time, to directly compare rates of rearrangements between different clades and identify both lineage specific and general patterns of evolution in the context of domain rearrangements. We analyse arrangement changes along phylogenetic trees by reconstructing ancestral domain content in combination with feasible single step events, such as fusion or fission. Using this approach we explain up to 70% of all rearrangements by tracing them back to their precursors. We find that rates in general and the ratio between these rates for a given clade in particular, are highly consistent across all clades. In agreement with previous studies, fusions are the most frequent event leading to new domain arrangements. A lineage specific pattern in fungi reveals exceptionally high loss rates compared to other clades, supporting recent studies highlighting the importance of loss for evolutionary innovation. Furthermore, our methodology allows us to link domain emergences at specific nodes in the phylogenetic tree to important functional developments, such as the origin of hair in mammals. CONCLUSIONS: Our results demonstrate that domain rearrangements are based on a canonical set of mutational events with rates which lie within a relatively narrow and consistent range. In addition, gained knowledge about these rates provides a basis for advanced domain-based methodologies for phylogenetics and homology analysis which complement current sequence-based methods.


Asunto(s)
Eucariontes , Evolución Molecular , Estructura Terciaria de Proteína/genética , Proteínas/química , Proteínas/genética , Animales , Abejas/fisiología , Resistencia a la Enfermedad/genética , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Hongos/clasificación , Hongos/genética , Ontología de Genes , Mutación/fisiología , Filogenia , Enfermedades de las Plantas/microbiología , Conducta Social , Vertebrados/clasificación , Vertebrados/genética , Vertebrados/metabolismo
5.
Transfus Med Hemother ; 46(5): 312-325, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31832057

RESUMEN

The advent of next generation sequencing (NGS) has altered the face of genotyping the human leukocyte antigen (HLA) system in clinical, stem cell donor registry, and research contexts. NGS has led to a dramatically increased sequencing throughput at high accuracy, while being more time and cost efficient than precursor technologies. This has led to a broader and deeper profiling of the key genes in the human immunogenetic make-up. The rapid evolution of sequencing technologies is evidenced by the development of varied short-read sequencing platforms with differing read lengths and sequencing capacities to long-read sequencing platforms capable of profiling full genes without fragmentation. Concomitantly, there has been development of a diverse set of computational analyses and software tools developed to deal with the various strengths and limitations of the sequencing data generated by the different sequencing platforms. This review surveys the different modalities involved in generating NGS HLA profiling sequence data. It systematically describes various computational approaches that have been developed to achieve HLA genotyping to different degrees of resolution. At each stage, this review enumerates the drawbacks and advantages of each of the platforms and analysis approaches, thus providing a comprehensive picture of the current state of HLA genotyping technologies.

6.
Hum Immunol ; 80(1): 44-52, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29879452

RESUMEN

Our understanding of sequence variation in the HLA-DPB1 gene is largely restricted to the hypervariable antigen recognition domain (ARD) encoded by exon 2. Here, we employed a redundant sequencing strategy combining long-read and short-read data to accurately phase and characterise in full length the majority of common and well-documented (CWD) DPB1 alleles as well as alleles with an observed frequency of at least 0.0006% in our predominantly European sample set. We generated 664 DPB1 sequences, comprising 279 distinct allelic variants. This allows us to present the, to date, most comprehensive analysis of the nature and extent of DPB1 sequence variation. The full-length sequence analysis revealed the existence of two highly diverged allele clades. These clades correlate with the rs9277534 A → G variant, a known expression marker located in the 3'-UTR. The two clades are fully differentiated by 174 fixed polymorphisms throughout a 3.6 kb stretch at the 3'-end of DPB1. The region upstream of this differentiation zone is characterised by increasingly shared variation between the clades. The low-expression A clade comprises 59% of the distinct allelic sequences including the three by far most frequent DPB1 alleles, DPB1*04:01, DPB1*02:01 and DPB1*04:02. Alleles in the A clade show reduced nucleotide diversity with an excess of rare variants when compared to the high-expression G clade. This pattern is consistent with a scenario of recent proliferation of A-clade alleles. The full-length characterisation of all but the most rare DPB1 alleles will benefit the application of NGS for DPB1 genotyping and provides a helpful framework for a deeper understanding of high- and low-expression alleles and their implications in the context of unrelated haematopoietic stem-cell transplantation.


Asunto(s)
Alelos , Variación Genética , Cadenas beta de HLA-DP/genética , Cadenas beta de HLA-DP/inmunología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/inmunología , Regiones no Traducidas 3' , Antígenos/inmunología , Antígenos/metabolismo , Secuencia de Bases , Sitios de Unión , Evolución Molecular , Exones , Genotipo , Cadenas beta de HLA-DP/química , Haplotipos , Humanos , Intrones , Unión Proteica , Análisis de Secuencia de ADN
7.
FEBS J ; 285(14): 2605-2625, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29802682

RESUMEN

Over long time scales, protein evolution is characterized by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 mya. We use established domain models and foldable domains delineated by hydrophobic cluster analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, that is, from previously noncoding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonization of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multidomain arrangements. Young domains, such as most HCA-defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of de novo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterized by cross-species comparisons alone.


Asunto(s)
Secuencia de Bases , Evolución Molecular , Genoma de los Insectos , Proteínas de Insectos/química , Insectos/genética , Eliminación de Secuencia , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Exones , Duplicación de Gen , Expresión Génica , Fusión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/clasificación , Intrones , Filogenia , Dominios Proteicos , Selección Genética
8.
Bioinform Biol Insights ; 10: 121-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27493475

RESUMEN

While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies.

9.
Genome Biol ; 16: 76, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25908251

RESUMEN

BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.


Asunto(s)
Abejas/genética , Conducta Animal , Genes de Insecto , Conducta Social , Animales , Venenos de Abeja/genética , Abejas/clasificación , Abejas/fisiología , Células Quimiorreceptoras/metabolismo , Mapeo Cromosómico , Bases de Datos Genéticas , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Reordenamiento Génico , Genómica , Secuencias Repetitivas Esparcidas , Masculino , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Selenoproteínas/genética , Selenoproteínas/metabolismo , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...