Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38978500

RESUMEN

The development of biomaterials capable of regulating cellular processes and guiding cell fate decisions has broad implications in tissue engineering, regenerative medicine, and cell-based assays for drug development and disease modeling. Recent studies have shown that three-dimensional (3D) nanoscale physical cues such as nanotopography can modulate various cellular processes like adhesion and endocytosis by inducing nanoscale curvature on the plasma and nuclear membranes. Two-dimensional (2D) biochemical cues such as protein micropatterns can also regulate cell function and fate by controlling cellular geometries. Development of biomaterials with precise control over nanoscale physical and biochemical cues can significantly influence programming cell function and fate. In this study, we utilized a laser-assisted micropatterning technique to manipulate the 2D architectures of cells on 3D nanopillar platforms. We performed a comprehensive analysis of cellular and nuclear morphology and deformation on both nanopillar and flat substrates. Our findings demonstrate the precise engineering of single cell architectures through 2D micropatterning on nanopillar platforms. We show that the coupling between the nuclear and cell shape is disrupted on nanopillar surfaces compared to flat surfaces. Furthermore, our results suggest that cell elongation on nanopillars enhances nanopillar-induced endocytosis. We believe our platform serves as a versatile tool for further explorations into programming cell function and fate through combined physical cues that create nanoscale curvature on cell membranes and biochemical cues that control the geometry of the cell.

2.
Trends Microbiol ; 32(7): 697-706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38151387

RESUMEN

Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.


Asunto(s)
Bacterias , Sedimentos Geológicos , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Fósforo/metabolismo , Sulfuros/metabolismo , Biodegradación Ambiental , Sulfatos/metabolismo , Nitrógeno/metabolismo
3.
Adv Mater ; 35(40): e2302497, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311656

RESUMEN

The compaction and organization of genomic DNA is a central mechanism in eukaryotic cells, but engineered architectural control over double-stranded DNA (dsDNA) is notably challenging. Here, long dsDNA templates are folded into designed shapes via triplex-mediated self-assembly. Triplex-forming oligonucleotides (TFOs) bind purines in dsDNA via normal or reverse Hoogsteen interactions. In the triplex origami methodology, these non-canonical interactions are programmed to compact dsDNA (linear or plasmid) into well-defined objects, which demonstrate a variety of structural features: hollow and raster-filled, single- and multi-layered, with custom curvatures and geometries, and featuring lattice-free, square-, or honeycomb-pleated internal arrangements. Surprisingly, the length of integrated and free-standing dsDNA loops can be modulated with near-perfect efficiency; from hundreds down to only six bp (2 nm). The inherent rigidity of dsDNA promotes structural robustness and non-periodic structures of almost 25.000 nt are therefore formed with fewer unique starting materials, compared to other DNA-based self-assembly methods. Densely triplexed structures also resist degradation by DNase I. Triplex-mediated dsDNA folding is methodologically straightforward and orthogonal to Watson-Crick-based methods. Moreover, it enables unprecedented spatial control over dsDNA templates.


Asunto(s)
ADN , Oligonucleótidos , Oligonucleótidos/química , ADN/química , Conformación de Ácido Nucleico
4.
ACS Appl Mater Interfaces ; 15(17): 21595-21601, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070722

RESUMEN

Tribological properties depend strongly on environmental conditions such as temperature, humidity, and operation liquid. However, the origin of the liquid effect on friction remains largely unexplored. Herein, taking molybdenum disulfide (MoS2) as a model system, we explored the nanoscale friction of MoS2 in polar (water) and nonpolar (dodecane) liquids through friction force microscopy. The friction force exhibits a similar layer-dependent behavior in liquids as in air; i.e., thinner samples have a larger friction force. Interestingly, friction is significantly influenced by the polarity of the liquid, and it is larger in polar water than in nonpolar dodecane. Atomically resolved friction images together with atomistic simulations reveal that the polarity of the liquid has a substantial effect on friction behavior, where liquid molecule arrangement and hydrogen-bond formation lead to a higher resistance in polar water in comparison to that in nonpolar dodecane. This work provides insights into the friction on two-dimensional layered materials in liquids and holds great promise for future low-friction technologies.

5.
Sci Total Environ ; 875: 162603, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871738

RESUMEN

The bacterial and photocatalysis techniques have been widely applied into the remediation of ammonia nitrogen wastewater. Although traditional microbial methods had been verified useful; more efficient, energy-saving and controllable candidate treatment methods are still urgently needed to cover the increasingly diverse ammonia nitrogen pollution cases. The bacterial treatment technique for ammonia nitrogen mainly depends on the ammonia nitrogen oxidation-reduction (e.g. nitrification, denitrification) by nitrifying bacteria and denitrifying bacteria, but these reactions suffer from slow denitrifying kinetic process and uncontrolled disproportionation reaction. In comparison, the photocatalysis technique based on photoelectrons is more efficient and has some advantages, such as low temperature reaction and long life, while the photocatalysis technique can not perform multiple complex biochemical reactions. Despite much scientific knowledge obtained about this issue recently, such research has yet not been widely adopted in the industry because of many concerns about subsequent catalyst stability and economic feasibility. This review summarized and discussed the very recent achievements and key problems on remediation of high-ammonia­nitrogen wastewater and oxidation driven by bacterial treatment and photocatalysis techniques, as well as the most promising future directions for these two techniques, especially the potential of jointly bacterial-photocatalysis techniques.


Asunto(s)
Amoníaco , Aguas Residuales , Desnitrificación , Reactores Biológicos , Nitrificación , Bacterias , Nitrógeno/análisis , Oxidación-Reducción
6.
Nat Commun ; 12(1): 1709, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731718

RESUMEN

Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.


Asunto(s)
Transporte de Electrón/fisiología , Bacterias Grampositivas/metabolismo , Bacillaceae/citología , Bacillaceae/crecimiento & desarrollo , Bacillaceae/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Conductividad Eléctrica , Electrodos/microbiología , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Bacterias Grampositivas/citología , Bacterias Grampositivas/crecimiento & desarrollo , Grafito , Microscopía de Fuerza Atómica , Nanocables
7.
Bioact Mater ; 6(5): 1452-1463, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33251381

RESUMEN

Mesoporous silica thin film has been widely used in various fields, particularly the medical implant coating for drug delivery. However, some drawbacks remain with the films produced by traditional method (evaporation-induced self-assembly, EISA), such as the poor permeability caused by their horizontal aligned mesochannels. In this study, the vertical aligned mesoporous silica thin film (VMSTF) is uniformly grown alongside the walls of titania nanotubes array via a biphase stratification growth method, resulting in a hierarchical two-layered nanotubular structure. Due to the exposure of opened mesopores, VMSTF exhibits more appealing performances, including rapid degradation, efficient small-molecular drug (dexamethasone) loading and release, enhanced early adhesion and osteogenic differentiation of MC3T3-E1 cells. This is the first time successfully depositing VMSTF on nanoporous substrate and our findings suggest that the VMSTF may be a promising candidate for bone implant surface coating to obtain bioactive performances.

8.
Small ; 14(48): e1801983, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30264534

RESUMEN

One of the major issues in tissue engineering is constructing a functional scaffold to support cell growth and also provide proper synergistic guidance cues. Graphene-based nanomaterials have emerged as biocompatible and electroactive scaffolds for neurogenesis and myogenesis, due to their excellent tunable chemical, physical, and mechanical properties. This review first assesses the recent investigations focusing on the fabrication and applications of graphene-based nanomaterials for neurogenesis and myogenesis, in the form of either 2D films, 3D scaffolds, or composite architectures. Besides, because of their outstanding electrical properties, graphene family materials are particularly suitable for designing electroactive scaffolds that could provide proper electrical stimulation (i.e., electrical or photo stimuli) to promote the regeneration of excitable neurons and muscle cells. Therefore, the effects and mechanism of electrical and/or photo stimulations on neurogenesis and myogenesis are followed. Furthermore, studies on their biocompatibilities and toxicities especially to neural and muscle cells are evaluated. Finally, the future challenges and perspectives in facilitating the development of clinical translation of graphene-family nanomaterials in treating neurodegenerative and muscle diseases are discussed.


Asunto(s)
Grafito/química , Nanoestructuras/química , Andamios del Tejido/química , Animales , Estimulación Eléctrica , Humanos , Neurogénesis/fisiología , Ingeniería de Tejidos/métodos
9.
Proc Natl Acad Sci U S A ; 115(34): 8517-8522, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082405

RESUMEN

Filamentous Desulfobulbaceae bacteria were recently discovered as long-range transporters of electrons from sulfide to oxygen in marine sediments. The long-range electron transfer through these cable bacteria has created considerable interests, but it has also raised many questions, such as what structural basis will be required to enable micrometer-sized cells to build into centimeter-long continuous filaments? Here we dissected cable bacteria cells in vitro by atomic force microscopy and further explored the interior, which is normally hidden behind the outer membrane. Using nanoscale topographical and mechanical maps, different types of bacterial cell-cell junctions and strings along the cable length were identified. More important, these strings were found to be continuous along the bacterial cells passing through the cell-cell junctions. This indicates that the strings serve an important function in maintaining integrity of individual cable bacteria cells as a united filament. Furthermore, ridges in the outer membrane are found to envelop the individual strings at cell-cell junctions, and they are proposed to strengthen the junctions. Finally, we propose a model for the division and growth of the cable bacteria, which illustrate the possible structural requirements for the formation of centimeter-length filaments in the recently discovered cable bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Deltaproteobacteria/fisiología , Microbiología del Agua , Transporte Biológico Activo/fisiología
10.
ACS Nano ; 12(6): 5408-5416, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29771495

RESUMEN

Aberrant assembly of the amyloid-ß (Aß) is responsible for the development of Alzheimer's disease, but can also be exploited to obtain highly functional biomaterials. The short Aß fragment, KLVFF (Aß16-20), is crucial for Aß assembly and considered to be an Aß aggregation inhibitor. Here, we show that acetylation of KLVFF turns it into an extremely fast self-assembling molecule, reaching macroscopic ( i.e., mm) size in seconds. We show that KLVFF is metastable and that the self-assembly can be directed toward a crystalline or fibrillar phase simply through chemical modification, via acetylation or amidation of the peptide. Amidated KLVFF can form amyloid fibrils; we observed folding events of such fibrils occurring in as little as 60 ms. The ability of single KLVFF molecules to rapidly assemble as highly ordered macroscopic structures makes it a promising candidate for applications as a rapid-forming templating material.

11.
Nanoscale ; 10(9): 4538-4544, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29461548

RESUMEN

The local surface charge density of the cell membrane influences regulation and localization of membrane proteins. The local surface charge density could, until recently, not be measured directly under physiological conditions, and it was largely a hypothetical yet very important parameter. Here we use unsaturated lipids of a distinct charge (DOTAP, DOPC, and DOPG) and a neutral fully saturated lipid (DPPC) to create model membranes with phase separating domains of a defined charge. We then apply quantitative surface charge microscopy (QSCM) to investigate the local surface charge density; this is a technique based on a scanning ion conductance microscope (SICM) capable of measuring surface charge density with nanoscale lateral resolution. We are able to clearly distinguish lipid domains from charge and topography in all three model membranes. The measured surface charge densities furthermore reveal that disordered domains formed by charged lipids are in fact not only impure, but also incorporate uncharged saturated lipids. We estimate that at least 30% of disordered domains in DOPG : DPPC and DOTAP : DPPC will be DPPC. These ratios could present a limit for the formation of charged domains in lipid membranes.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Microscopía
12.
J Struct Biol ; 201(1): 63-75, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113848

RESUMEN

Cryo-correlative light and electron microscopy (cryo-CLEM) offers a unique way to analyze the high-resolution structural information of cryo-vitrified specimen by cryo-electron microscopy (cryo-EM) with the guide of the search for unique events by cryo-fluorescence microscopy (cryo-FM). To achieve cryo-FM, a trade-off must be made between the temperature and performance of objective lens. The temperature of specimen should be kept below devitrification while the distance between the objective lens and specimen should be short enough for high resolution imaging. Although special objective lens was designed in many current cryo-FM approaches, the unavoided frosting and ice contamination are still affecting the efficiency of cryo-CLEM. In addition, the correlation accuracy between cryo-FM and cryo-EM would be reduced during the current specimen transfer procedure. Here, we report an improved cryo-CLEM technique (high-vacuum optical platform for cryo-CLEM, HOPE) based on a high-vacuum optical stage and a commercial cryo-EM holder. The HOPE stage comprises of a special adapter to suit the cryo-EM holder and a high-vacuum chamber with an anti-contamination system. It provides a clean and enduring environment for cryo specimen, while the normal dry objective lens in room temperature can be used via the optical windows. The 'touch-free' specimen transfer via cryo-EM holder allows least specimen deformation and thus maximizes the correlation accuracy between cryo-FM and cryo-EM. Besides, we developed a software to perform semi-automatic cryo-EM acquisition of the target region localized by cryo-FM. Our work provides a new solution for cryo-CLEM and can be adapted for different commercial fluorescence microscope and electron microscope.


Asunto(s)
Microscopía por Crioelectrón/métodos , Microscopía Fluorescente/métodos , Temperatura , Vacio , Algoritmos , Animales , Animales Recién Nacidos , Células Cultivadas , Microscopía por Crioelectrón/instrumentación , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/instrumentación , Neuronas/citología , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Proteína Fluorescente Roja
13.
Nat Commun ; 7: 12447, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561322

RESUMEN

Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.


Asunto(s)
Membrana Dobles de Lípidos/química , Microscopía/métodos , Modelos Químicos , Algoritmos , Aniones/química , Cationes/química , Microscopía/instrumentación , Nanotecnología/instrumentación , Nanotecnología/métodos , Electricidad Estática , Propiedades de Superficie
14.
Nanoscale ; 7(46): 19627-40, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26549058

RESUMEN

The interaction between nanoparticles (NPs) and the small intrinsically disordered protein α-synuclein (αSN), whose aggregation is central in the development of Parkinson's disease, is of great relevance in biomedical applications of NPs as drug carriers. Here we showed using a combination of different techniques that αSN interacts strongly with positively charged polyethylenimine-coated human serum albumin (PEI-HSA) NPs, leading to a significant alteration in the αSN secondary structure. In contrast, the weak interactions of αSN with HSA NPs allowed αSN to remain unfolded. These different levels of interactions had different effects on αSN aggregation. While the weakly interacting HSA NPs did not alter the aggregation kinetic parameters of αSN, the rate of primary nucleation increased in the presence of PEI-HSA NPs. The aggregation rate changed in a PEI-HSA NP-concentration dependent and size independent manner and led to fibrils which were covered with small aggregates. Furthermore, PEI-HSA NPs reduced the level of membrane-perturbing oligomers and reduced oligomer toxicity in cell assays, highlighting a potential role for NPs in reducing αSN pathogenicity in vivo. Collectively, our results highlight the fact that a simple modification of NPs can strongly modulate interactions with target proteins, which may have important and positive implications in NP safety.


Asunto(s)
Nanopartículas/química , Polietileneimina/química , Agregado de Proteínas , Albúmina Sérica/química , alfa-Sinucleína/química , Humanos
15.
Int J Nanomedicine ; 10: 2335-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25848254

RESUMEN

Titanium surface modification is crucial to improving its bioactivity, mainly its bone binding ability in bone implant materials. In order to functionalize titanium with small interfering RNA (siRNA) for sustained gene silencing in nearby cells, the layer-by-layer (LbL) approach was applied using sodium hyaluronate and chitosan/siRNA (CS/siRNA) nanoparticles as polyanion and polycation, respectively, to build up the multilayered film on smooth titanium surfaces. The CS/siRNA nanoparticle characterization was analyzed first. Dynamic contact angle, atomic force microscopy, and scanning electron microscopy were used to monitor the layer accumulation. siRNA loaded in the film was quantitated and the release profile of film in phosphate-buffered saline was studied. In vitro knockdown effect and cytotoxicity evaluation of the film were investigated using H1299 human lung carcinoma cells expressing green fluorescent protein (GFP). The transfection of human osteoblast-like cell MG63 and H1299 were performed and the osteogenic differentiation of MG63 on LbL film was analyzed. The CS/siRNA nanoparticles exhibited nice size distribution. During formation of the film, the surface wettability, topography, and roughness were alternately changed, indicating successful adsorption of the individual layers. The scanning electron microscope images clearly demonstrated the hybrid structure between CS/siRNA nanoparticles and sodium hyaluronate polymer. The cumulated load of siRNA increased linearly with the bilayer number and, more importantly, a gradual release of the film allowed the siRNA to be maintained on the titanium surface over approximately 1 week. In vitro transfection revealed that the LbL film-associated siRNA could consistently suppress GFP expression in H1299 without showing significant cytotoxicity. The LbL film loading with osteogenic siRNA could dramatically increase the osteogenic differentiation in MG63. In conclusion, LbL technology can potentially modify titanium surfaces with specific gene-regulatory siRNAs to enhance biofunction.


Asunto(s)
Quitosano/química , Silenciador del Gen , Nanopartículas/química , Osteogénesis , ARN Interferente Pequeño/química , Titanio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Transfección
16.
Biochemistry ; 53(44): 6968-80, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25334015

RESUMEN

The formation of aggregated fibrillar ß-sheet structures has been proposed to be a generic feature of proteins. Aggregation propensity is highly sequence dependent, and often only part of the protein is incorporated into the fibril core. Therefore, shorter peptide fragments corresponding to the fibril core are attractive fibrillation models. The use of peptide models introduces new termini into the fibrils, yet little attention has been paid to the role these termini may play in fibrillation. Here, we report that terminal modifications of a 10-residue peptide fragment of human islet amyloid polypeptide strongly affect fibrillation kinetics and the resulting fibril morphology. Capping of the N-terminus abolishes fibrillation, while C-terminal capping results in fibrils with a twisted morphology. Peptides with either both termini free or both termini capped form flat fibrils. Molecular dynamics simulations reveal that the N-terminal acetyl cap folds up and interacts with the peptide's hydrophobic side chains, while the uncapped N-terminus in the C-terminally capped version results in twisting of the fibrils due to charge repulsion from the free N-termini. Our results highlight the role of terminal interactions in fibrillation of small peptides and provide molecular insight into the consequences of C-terminal modifications frequently found in peptide hormones in vivo.


Asunto(s)
Amiloide/química , Polipéptido Amiloide de los Islotes Pancreáticos/química , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Agregación Patológica de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...