Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS One ; 19(3): e0292203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446766

RESUMEN

Considering sex as a biological variable in modern digital health solutions, we investigated sex-specific differences in the trajectory of four physiological parameters across a COVID-19 infection. A wearable medical device measured breathing rate, heart rate, heart rate variability, and wrist skin temperature in 1163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%] females). Participants reported daily symptoms and confounders in a complementary app. A machine learning algorithm retrospectively ingested daily biophysical parameters to detect COVID-19 infections. COVID-19 serology samples were collected from all participants at baseline and follow-up. We analysed potential sex-specific differences in physiology and antibody titres using multilevel modelling and t-tests. Over 1.5 million hours of physiological data were recorded. During the symptomatic period of infection, men demonstrated larger increases in skin temperature, breathing rate, and heart rate as well as larger decreases in heart rate variability than women. The COVID-19 infection detection algorithm performed similarly well for men and women. Our study belongs to the first research to provide evidence for differential physiological responses to COVID-19 between females and males, highlighting the potential of wearable technology to inform future precision medicine approaches.


Asunto(s)
COVID-19 , Masculino , Humanos , Femenino , Adulto , COVID-19/diagnóstico , Estudios Retrospectivos , SARS-CoV-2 , Algoritmos , Biofisica
2.
Eur J Drug Metab Pharmacokinet ; 48(4): 377-385, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37322238

RESUMEN

BACKGROUND AND OBJECTIVE: Underdosing of adalimumab can result in non-response and poor disease control in patients with rheumatic disease or inflammatory bowel disease. In this pilot study we aimed to predict adalimumab concentrations with population pharmacokinetic model-based Bayesian forecasting early in therapy. METHODS: Adalimumab pharmacokinetic models were identified with a literature search. A fit-for-purpose evaluation of the model was performed for rheumatologic and inflammatory bowel disease (IBD) patients with adalimumab peak (first dose) and trough samples (first and seventh dose) obtained by a volumetric absorptive microsampling technique. Steady state adalimumab concentrations were predicted after the first adalimumab administration. Predictive performance was calculated with mean prediction error (MPE) and normalised root mean square error (RMSE). RESULTS: Thirty-six patients (22 rheumatologic and 14 IBD) were analysed in our study. After stratification for absence of anti-adalimumab antibodies, the calculated MPE was -2.6% and normalised RMSE 24.0%. Concordance between predicted and measured adalimumab serum concentrations falling within or outside the therapeutic window was 75%. Three patients (8.3%) developed detectable concentrations of anti-adalimumab antibodies. CONCLUSION: This prospective study demonstrates that adalimumab concentrations at steady state can be predicted from early samples during the induction phase. CLINICAL TRIAL REGISTRATION: The trial was registered in the Netherlands Trial Register with trial registry number NTR 7692 ( www.trialregister.nl ).


Asunto(s)
Artritis Reumatoide , Enfermedades Inflamatorias del Intestino , Humanos , Adalimumab/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral , Proyectos Piloto , Estudios Prospectivos , Teorema de Bayes , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico
4.
BMJ Open ; 12(6): e058274, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35728900

RESUMEN

OBJECTIVES: We investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device. DESIGN: Interim analysis of a prospective cohort study. SETTING, PARTICIPANTS AND INTERVENTIONS: Participants from a national cohort study in Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory rate (RR), heart rate (HR), HR variability (HRV), wrist-skin temperature (WST) and skin perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. RESULTS: A total of 1.5 million hours of physiological data were recorded from 1163 participants (mean age 44±5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) had worn their device from baseline to symptom onset (SO) and were included in this analysis. Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio and WST) device-measured physiological parameters during the incubation, presymptomatic, symptomatic and recovery periods of COVID-19 compared with baseline. The training set represented an 8-day long instance extracted from day 10 to day 2 before SO. The training set consisted of 40 days measurements from 66 participants. Based on a random split, the test set included 30% of participants and 70% were selected for the training set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when detecting COVID-19 up to 2 days prior to SO. CONCLUSION: Wearable sensor technology can enable COVID-19 detection during the presymptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive participants 2 days prior to SO and will be further trained and validated in a randomised, single-blinded, two-period, two-sequence crossover trial. Trial registration number ISRCTN51255782; Pre-results.


Asunto(s)
COVID-19 , Adulto , COVID-19/diagnóstico , Estudios de Cohortes , Humanos , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2
5.
Trials ; 22(1): 694, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635140

RESUMEN

OBJECTIVES: It is currently thought that most-but not all-individuals infected with SARS-CoV-2 develop symptoms, but the infectious period starts on average 2 days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: • The algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) • The algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. TRIAL DESIGN: The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. The study will start with an initial learning phase (maximum of 3 months), followed by period 1 (3 months) and period 2 (3 months). Subjects entering the study at the end of the recruitment period may directly start with period 1 and will not be part of the learning phase. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in either period 1 or period 2 and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either sequence 1 (experimental condition first) or sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. PARTICIPANTS: The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6500 normal-risk individuals and 3500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal and self-sampling serology and PCR kits. More information on the study can be found in www.covid-red.eu . During recruitment, subjects will be invited to visit the COVID-RED web portal. After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria: Inclusion criteria: • Resident of the Netherlands • At least 18 years old • Informed consent provided (electronic) • Willing to adhere to the study procedures described in the protocol • Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, the study team should be notified) • Be able to read, understand and write Dutch Exclusion criteria: • Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) • Current suspected (e.g. waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) • Participating in any other COVID-19 clinical drug, vaccine or medical device trial (self-reported) • Electronic implanted device (such as a pacemaker; self-reported) • Pregnant at the time of informed consent (self-reported) • Suffering from cholinergic urticaria (per the Ava bracelet's user manual; self-reported) • Staff involved in the management or conduct of this study INTERVENTION AND COMPARATOR: All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronize it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 h, the Ava COVID-RED app's underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess the intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). Note that both algorithms will also instruct to seek testing when any SARS-CoV-2 symptoms are reported in line with those defined by the Dutch national institute for public health and the environment 'Rijksinstituut voor Volksgezondheid en Milieu' (RIVM) guidelines. MAIN OUTCOMES: The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with the self-reported Daily Symptom Diary data and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional twenty secondary and exploratory objectives which address, among others, infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2-infected participants and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (between month 0 and 3.5 months after the start of subject recruitment), at the end of the learning phase (month 3; note that this sampling moment is skipped if a subject entered the study at the end of the recruitment period), period 1 (month 6) and period 2 (month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the learning phase is positive, or if the subject entered the study at the end of the recruitment period, and samples collected at the end of period 1 will only be analysed if the sample collected at the end of period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called COVID-positive mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using the data collected in period 2 (months 6 through 9). Within this period, serology tests (before and after period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. RANDOMIZATION: All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimentalcondition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in approximately equal numbers of high-risk and normal-risk individuals between the sequences. BLINDING (MASKING): In this study, subjects will be blinded to the study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED app for the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on the data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 20,000 subjects will be recruited and randomized 1:1 to either sequence 1 (experimental condition followed by control condition) or sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6500 normal-risk and 3500 high-risk individuals per sequence. TRIAL STATUS: Protocol version: 3.0, dated May 3, 2021. Start of recruitment: February 19, 2021. End of recruitment: June 3, 2021. End of follow-up (estimated): November 2021 TRIAL REGISTRATION: The Netherlands Trial Register on the 18th of February, 2021 with number NL9320 ( https://www.trialregister.nl/trial/9320 ) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Asunto(s)
COVID-19 , Dispositivos Electrónicos Vestibles , Adolescente , Vacunas contra la COVID-19 , Estudios Cruzados , Humanos , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2
6.
Trials ; 22(1): 412, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158099

RESUMEN

OBJECTIVES: It is currently thought that most-but not all-individuals infected with SARS-CoV-2 develop symptoms, but that the infectious period starts on average two days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) the algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. TRIAL DESIGN: The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. All subjects will participate in an initial Learning Phase (varying from 2 weeks to 3 months depending on enrolment date), followed by two contiguous 3-month test phases, Period 1 and Period 2. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in one of these periods and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either Sequence 1 (experimental condition first) or Sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. PARTICIPANTS: The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6,500 normal-risk individuals and 3,500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal, and self-sampling serology and PCR kits. During recruitment, subjects will be invited to visit the COVID-RED web portal ( www.covid-red.eu ). After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria. INCLUSION CRITERIA: Resident of the Netherlands At least 18 years old Informed consent provided (electronic) Willing to adhere to the study procedures described in the protocol Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, study team should be notified) Be able to read, understand and write Dutch Exclusion criteria: Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) Previously received a vaccine developed specifically for COVID-19 or in possession of an appointment for vaccination in the near future (self-reported) Current suspected (e.g., waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) Participating in any other COVID-19 clinical drug, vaccine, or medical device trial (self-reported) Electronic implanted device (such as a pacemaker; self-reported) Pregnant at time of informed consent (self-reported) Suffering from cholinergic urticaria (per the Ava bracelet's User Manual; self-reported) Staff involved in the management or conduct of this study INTERVENTION AND COMPARATOR: All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronise it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 hours, the Ava COVID-RED app's underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that: no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). MAIN OUTCOMES: The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature, and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava Bracelet data when coupled with the self-reported Daily Symptom Diary data, and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional seventeen secondary outcomes which address infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2 infected participants, and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme, and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (Month 0), and at the end of the Learning Phase (Month 3), Period 1 (Month 6) and Period 2 (Month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the Learning Phase is positive, and samples collected at the end of Period 1 will only be analysed if the sample collected at the end of Period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called "COVID-positive" mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using data collected in Period 2 (Month 6 through 9). Within this period, serology tests (before and after Period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. RANDOMISATION: All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimental condition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in equal numbers of high-risk and normal-risk individuals between the sequences. BLINDING (MASKING): In this study, subjects will be blinded as to study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED appfor the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 20,000 subjects will be recruited and randomized 1:1 to either Sequence 1 (experimental condition followed by control condition) or Sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6,500 normal-risk and 3,500 high-risk individuals per sequence. TRIAL STATUS: Protocol version: 1.2, dated January 22nd, 2021 Start of recruitment: February 22nd, 2021 End of recruitment (estimated): April 2021 End of follow-up (estimated): December 2021 TRIAL REGISTRATION: The trial has been registered at the Netherlands Trial Register on the 18th of February, 2021 with number NL9320 ( https://www.trialregister.nl/trial/9320 ) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Asunto(s)
COVID-19 , Dispositivos Electrónicos Vestibles , Adolescente , Vacunas contra la COVID-19 , Estudios Cruzados , Femenino , Humanos , Países Bajos , Embarazo , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Resultado del Tratamiento
7.
Br J Clin Pharmacol ; 84(1): 208-210, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28891590

RESUMEN

ADVERSE EVENT: A drug interaction leading to higher exposure to cyclosporine. DRUGS IMPLICATED: Cyclosporine and ticagrelor. THE PATIENT: A 49-year-old man with a stable renal graft, managed with cyclosporine with stable trough blood concentrations for several years, was treated with ticagrelor for unstable angina pectoris. EVIDENCE THAT LINKS THE DRUG TO THE EVENT: The timeline was consistent with the appearance of an interaction, the interaction was confirmed by an increase in trough concentration of cyclosporine, and there were no alternative causes that by themselves could have caused the increase in cyclosporine exposure. MANAGEMENT: Cessation of ticagrelor. MECHANISM: Inhibition of CYP3A4 and P-glycoprotein by ticagrelor. IMPLICATIONS FOR THERAPY: Clinicians should be aware of this potential interaction as ticagrelor is frequently prescribed in individuals using cyclosporine. Close monitoring of cyclosporine serum concentrations is warranted to avoid overdosing of cyclosporine. A pharmacokinetic study is needed to further examine the probable interaction between cyclosporine and ticagrelor.


Asunto(s)
Adenosina/análogos & derivados , Ciclosporina/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adenosina/farmacología , Angina de Pecho/sangre , Angina de Pecho/tratamiento farmacológico , Área Bajo la Curva , Ciclosporina/sangre , Citocromo P-450 CYP3A/metabolismo , Monitoreo de Drogas , Rechazo de Injerto/sangre , Rechazo de Injerto/prevención & control , Humanos , Inmunosupresores/sangre , Inmunosupresores/farmacología , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Polifarmacia , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ticagrelor
8.
Lasers Surg Med ; 49(7): 698-704, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28449323

RESUMEN

OBJECTIVE: To study the effectiveness of two laser techniques clinically used to fragment renal stones: fragmenting technique (FT) and popcorn technique (PT). METHODS: Phantom stones were placed in a test tube filled with water, mimicking a renal calyx model. A Holmium:YAG laser was used for fragmentation using both techniques. Four series of experiments were performed with two parameters: the technique (FT or PT) and the number of stones in the test tube (one or four). The mass decrease of the phantom stones was measured before, during, and after the experiment to quantify the effect of both techniques. RESULTS: Visualization of PT showed that the main effect of PT takes place, when the stone moves in front of the laser fiber and is subject to direct radiant exposure. Both FT and PT resulted in a decrease in stone weight; the mass decrease of the stones subjected to FT exceeded that of the stones subjected to PT, even with less laser energy applied. This difference in mass decrease was evident in both the experiments with one and four stones. CONCLUSIONS: PT was less effective in decreasing stone weight compared with FT. The FT is more effective regarding the applied energy than PT, even in a shorter time period and regardless of the number of stones. This study suggests that FT is to be preferred over PT, when stones are accessible by the laser fiber. Lasers Surg. Med. 49:698-704, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Cálculos Renales/terapia , Láseres de Estado Sólido/uso terapéutico , Litotripsia por Láser/métodos , Humanos , Técnicas In Vitro , Modelos Anatómicos
9.
ACS Chem Biol ; 8(7): 1621-31, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23656859

RESUMEN

The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (∼70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer.


Asunto(s)
Cobre/química , Cobre/farmacología , Sistemas de Liberación de Medicamentos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Disponibilidad Biológica , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cobre/farmacocinética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Compuestos Organometálicos/farmacocinética
10.
Ther Drug Monit ; 34(1): 67-71, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22249345

RESUMEN

BACKGROUND: Gentamicin-polymethylmethacrylate (PMMA) beads release gentamicin gradually, and high concentrations develop only locally. It is unclear how frequent and in which patients gentamicin serum concentrations are measurable and possibly lead to toxicity. The aim of this study was to investigate the measurability of gentamicin serum concentrations after the implantation of gentamicin-PMMA beads and to assess the nephrotoxicity of these beads. METHODS: In this observational cohort study, gentamicin and creatinine concentrations were measured in 34 serum samples of 23 patients with implanted gentamicin-PMMA beads for infected hip joints with our regular immunoassay (lower limit of quantitation 0.4 mg/L). Samples were also analyzed with an adjusted immunoassay with a lower limit of quantitation of 0.05 mg/L. RESULTS: Gentamicin serum concentrations were >0.4 mg/L in 9 of 34 (26%) of all the samples measured (both after the first implantation and change of beads) and in 5 of 23 patients (22%) after the first implantation of gentamicin-PMMA beads. Gentamicin serum concentrations were >0.05 mg/L in 31 samples (91%). Nephrotoxicity (defined as increase in serum creatinine >44 µmole/L and/or a relative increase >25%) occurred more frequently in patients with measurable gentamicin serum concentrations than in those without measurable gentamicin serum levels (57% versus 43%, P = 0.02). Both nephrotoxicity and gentamicin serum concentration could not be associated with the number of implanted gentamicin-PMMA beads. CONCLUSIONS: Gentamicin serum concentrations >0.4 mg/L can be measured after the implantation of gentamicin-PMMA beads in certain patients with infected hip joints. Furthermore, elevated (>0.4 mg/L) gentamicin serum concentrations are associated with nephrotoxicity in patients with gentamicin-PMMA beads for infected hip joints.


Asunto(s)
Infecciones Bacterianas/tratamiento farmacológico , Gentamicinas/administración & dosificación , Gentamicinas/uso terapéutico , Articulación de la Cadera/patología , Artropatías/tratamiento farmacológico , Metilmetacrilatos/administración & dosificación , Metilmetacrilatos/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/administración & dosificación , Antibacterianos/sangre , Antibacterianos/uso terapéutico , Estudios de Cohortes , Implantes de Medicamentos , Gentamicinas/sangre , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...