Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708360

RESUMEN

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.


Asunto(s)
Lotus , Polen , Termotolerancia , Polen/fisiología , Termotolerancia/fisiología , Lotus/fisiología , Lotus/crecimiento & desarrollo , Adaptación Fisiológica/fisiología , Calentamiento Global , Germinación/fisiología , Altitud , Cambio Climático , Temperatura , Aclimatación/fisiología
2.
J Therm Biol ; 113: 103502, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37055121

RESUMEN

Efficient thermoregulation is crucial for animals living under fluctuating climatic and weather conditions. We studied the body heating of six butterfly species of the genus Erebia (Lepidoptera: Nymphalidae) that co-occur in the European Alps. We tested whether butterfly physical characteristics (body size, wing loading) are responsible for the inter-specific differences in body temperatures recorded previously under natural conditions. We used a thermal camera to measure body heating of wild butterfly individuals in a laboratory experiment with artificial light and heating sources. We revealed that physical characteristics had a small effect on explaining inter-specific differences in mean body temperatures recorded in the field. Our results show that larger butterflies, with higher weight and wing loading, heated up more slowly but reached the same asymptotic body temperature as smaller butterflies. Altogether, our results suggest that differences in body temperatures among Erebia species observed in the field might be caused mainly by species-specific microhabitat use and point towards an important role of active behavioural thermoregulation in adult butterflies. We speculate that microclimate heterogeneity in mountain habitats facilitates behavioural thermoregulation of adults. Similarly, microclimate structuring might also increase survival of less mobile butterfly life stages, i.e., eggs, larvae and pupae. Thus, landscape heterogeneity in management practices may facilitate long term survival of montane invertebrates under increased anthropogenic pressures.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Calefacción , Temperatura Corporal , Regulación de la Temperatura Corporal , Tamaño Corporal
3.
PeerJ ; 10: e13671, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959478

RESUMEN

It is increasingly recognised that intraspecific variation in traits, such as morphology, behaviour, or diet is both ubiquitous and ecologically important. While many species of predators and herbivores are known to display high levels of between-individual diet variation, there is a lack of studies on pollinators. It is important to fill in this gap because individual-level specialisation of flower-visiting insects is expected to affect their efficiency as pollinators with consequences for plant reproduction. Accordingly, the aim of our study was to quantify the level of individual-level specialisation and foraging preferences, as well as interspecific resource partitioning, in three co-occurring species of bees of the genus Ceratina (Hymenoptera: Apidae: Xylocopinae), C. chalybea, C. nigrolabiata, and C. cucurbitina. We conducted a field experiment where we provided artificial nesting opportunities for the bees and combined a short-term mark-recapture study with the dissection of the bees' nests to obtain repeated samples from individual foraging females and complete pollen provisions from their nests. We used DNA metabarcoding based on the ITS2 locus to identify the composition of the pollen samples. We found that the composition of pollen carried on the bodies of female bees and stored in the brood provisions in their nests significantly differed among the three co-occurring species. At the intraspecific level, individual females consistently differed in their level of specialisation and in the composition of pollen carried on their bodies and stored in their nests. We also demonstrate that higher generalisation at the species level stemmed from larger among-individual variation in diets, as observed in other types of consumers, such as predators. Our study thus reveals how specialisation and foraging preferences of bees change from the scale of individual foraging bouts to complete pollen provisions accumulated in their nests over many days. Such a multi-scale view of foraging behaviour is necessary to improve our understanding of the functioning of plant-flower visitor communities.


Asunto(s)
Himenópteros , Polinización , Femenino , Abejas , Animales , Código de Barras del ADN Taxonómico , Flores , Polen
4.
PeerJ ; 10: e13009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462774

RESUMEN

Changes in environmental conditions are likely to have a complex effect on the growth of plants, their phenology, plant-pollinator interactions, and reproductive success. The current world is facing an ongoing climate change along with other human-induced environmental changes. Most research has focused on the impact of increasing temperature as a major driving force for climate change, but other factors may have important impacts on plant traits and pollination too and these effects may vary from season to season. In addition, it is likely that the effects of multiple environmental factors, such as increasing temperature, water availability, and nitrogen enrichment are not independent. Therefore, we tested the impact of two key factors-water, and nitrogen supply-on plant traits, pollination, and seed production in Sinapis alba (Brassicaceae) in three seasons defined as three temperature conditions with two levels of water and nitrogen supply in a factorial design. We collected data on multiple vegetative and floral traits and assessed the response of pollinators in the field. Additionally, we evaluated the effect of growing conditions on seed set in plants exposed to pollinators and in hand-pollinated plants. Our results show that water stress impaired vegetative growth, decreased flower production, and reduced visitation by pollinators and seed set, while high amount of nitrogen increased nectar production under low water availability in plants grown in the spring. Temperature modulated the effect of water and nitrogen availability on vegetative and floral traits and strongly affected flowering phenology and flower production. We demonstrated that changes in water and nitrogen availability alter plant vegetative and floral traits, which impacts flower visitation and consequently plant reproduction. We conclude that ongoing environmental changes such as increasing temperature, altered precipitation regimes and nitrogen enrichment may thus affect plant-pollinator interactions with negative consequences for the reproduction of wild plants and insect-pollinated crops.


Asunto(s)
Brassicaceae , Polinización , Humanos , Polinización/fisiología , Sinapis , Deshidratación , Productos Agrícolas
5.
Sci Rep ; 12(1): 713, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027664

RESUMEN

The composition of gut bacterial communities is strongly influenced by the host diet in many animal taxa. For birds, the effect of diet on the microbiomes has been documented through diet manipulation studies. However, for wild birds, most studies have drawn on literature-based information to decipher the dietary effects, thereby, overlooking individual variation in dietary intake. Here we examine how naturally consumed diets influence the composition of the crop and cloacal microbiomes of twenty-one tropical bird species, using visual and metabarcoding-based identification of consumed diets and bacterial 16S rRNA microbiome sequencing. We show that diet intakes vary markedly between individuals of the same species and that literature-based dietary guilds grossly underestimate intraspecific diet variability. Furthermore, despite an effect of literature-based dietary guild assignment of host taxa, the composition of natural diets does not align with crop and cloacal microbiome similarity. However, host-taxon specific gut bacterial lineages are positively correlated with specific diet items, indicating that certain microbes associate with different diet components in specific avian hosts. Consequently, microbiome composition is not congruent with the overall consumed diet composition of species, but specific components of a consumed diet lead to host-specific effects on gut bacterial taxa.


Asunto(s)
Aves/microbiología , Aves/fisiología , Dieta , Ingestión de Alimentos/fisiología , Microbioma Gastrointestinal/fisiología , Microbiota/fisiología , Clima Tropical , Animales , Aves/clasificación
6.
PeerJ ; 9: e12021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532158

RESUMEN

Low-elevation mountains represent unique model systems to study species endangered by climate warming, such as subalpine and alpine species of butterflies. We aimed to test the effect of climate variables experienced by Erebia butterflies during their development on adult abundances and phenology, targeting the key climate factors determining the population dynamics of mountain insects. We analysed data from a long-term monitoring of adults of two subalpine and alpine butterfly species, Erebia epiphron and E. sudetica (Nymphalidae: Satyrinae) in the Jeseník Mts and Krkonose Mts (Czech Republic). Our data revealed consistent patterns in their responses to climatic conditions. Lower precipitation (i.e., less snow cover) experienced by overwintering larvae decreases subsequent adult abundances. Conversely, warmer autumns and warmer and drier springs during the active larval phase increase adult abundances and lead to earlier onset and extended duration of the flight season. The population trends of these mountain butterflies are stable or even increasing. On the background of generally increasing temperatures within the mountain ranges, population stability indicates dynamic equilibrium of positive and detrimental consequences of climate warming among different life history stages. These contradictory effects warn against simplistic predictions of climate change consequences on mountain species based only on predicted increases in average temperature. Microclimate variability may facilitate the survival of mountain insect populations, however the availability of suitable habitats will strongly depend on the management of mountain grasslands.

8.
PeerJ ; 7: e7881, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31720101

RESUMEN

Despite a long tradition of research, our understanding of mechanisms driving prey selectivity in predatory insects is limited. According to optimal foraging theory, predators should prefer prey which provides the highest amount of energy per unit time. However, prey selectivity may also depend on previous diet and specific nutritional demands of the predator. From the long-term perspective, diet composition affects predator fitness. An open question is whether short-term selectivity of predators provides a diet which is optimal in the long-term. To shed more light on these issues, we conducted laboratory experiments on prey selectivity and its long-term consequences in larvae of the dragonfly Sympetrum sanguineum. We conditioned the larvae to one of two prey types, the cladoceran Daphnia magna and larvae of a non-biting midge Chironomus sp., and then exposed them to various combinations of the two prey types. We found that dragonfly larvae conditioned to Chironomus larvae consumed the same amount of D. magna, but significantly less Chironomus larvae compared to dragonfly larvae conditioned to D. magna. However, there was no effect of previous diet on their success of capture and handling time, suggesting a limited role of learning in their ability to process prey. We then tested the long-term effects of diets with different proportions of both prey for survival and growth of the dragonfly larvae. Individuals fed Chironomus-only diet had higher mortality and slower growth than dragonflies fed D. magna, while larvae fed a mixed diet had the highest survival and growth rate. In conclusion, we show that dragonfly larvae fed by Chironomus larvae performed poorly and compensated by preferring D. magna when both prey types were available. The superiority of the mixed diet suggests that a diverse diet may be needed to satisfy nutritional demands in S. sanguineum larvae. We demonstrate that merging short-term predation experiments with relevant data on predator fitness may provide better understanding of predator-prey interactions and conclude that detailed information on the (mis)matches between prey composition and predator nutritional demands is needed for further progress.

9.
PLoS One ; 14(11): e0224037, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31693676

RESUMEN

The way pollinators gather resources may play a key role for buffering their population declines. Social pollinators like bumblebees could adjust their foraging after significant workforce reductions to keep provisions to the colony optimal, especially in terms of pollen diversity and quantity. To test what effects a workforce reduction causes on the foraging for pollen, commercially-acquired colonies of the bumblebee Bombus terrestris were allowed to forage in the field and they were experimentally manipulated by removing half the number of workers. For each bumblebee, the pollen pellets were taxonomically identified with DNA metabarcoding of the ITS2 region followed by a statistical filtering based on ROC curves to filter out underrepresented OTUs. Video cameras and network analyses were employed to investigate changes in foraging strategies and behaviour. After filtering out the false-positives, HTS metabarcoding yielded a high plant diversity in the pollen pellets; for plant identity and pollen quantity traits no differences emerged between samples from treated and from control colonies, suggesting that plant choice was influenced mainly by external factors such as the plant phenology. The colonies responded to the removal of 50% of their workers by increasing the foraging activity of the remaining workers, while only negligible changes were found in diet breadth and indices describing the structure of the pollen transport network. Therefore, a consistency in the bumblebees' feeding strategies emerges in the short term despite the lowered workforce.


Asunto(s)
Abejas/fisiología , Polen , Polinización/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biodiversidad , República Checa , Código de Barras del ADN Taxonómico , Conducta Alimentaria , Plantas/clasificación , Plantas/genética , Polen/genética , Dinámica Poblacional
10.
Sci Rep ; 9(1): 7376, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089144

RESUMEN

Species extinctions undermine ecosystem functioning, with the loss of a small subset of functionally important species having a disproportionate impact. However, little is known about the effects of species loss on plant-pollinator interactions. We addressed this issue in a field experiment by removing the plant species with the highest visitation frequency, then measuring the impact of plant removal on flower visitation, pollinator effectiveness and insect foraging in several sites. Our results show that total visitation decreased exponentially after removing 1-4 most visited plants, suggesting that these plants could benefit co-occurring ones by maintaining high flower visitor abundances. Although we found large variation among plant species, the redistribution of the pollinator guild affected mostly the other plants with high visitor richness. Also, the plant traits mediated the effect of removal on flower visitation; while visitation of plants which had smaller inflorescences and more sugar per flower increased after removal, flower visitors did not switch between flower shapes and visitation decreased mostly in plants visited by many morpho-species of flower visitors. Together, these results suggest that the potential adaptive foraging was constrained by flower traits. Moreover, pollinator effectiveness fluctuated but was not directly linked to changes of flower visitation. In conclusion, it seems that the loss of generalist plants alters plant-pollinator interactions by decreasing pollinator abundance with implications for pollination and insect foraging. Therefore, generalist plants have high conservation value because they sustain the complex pattern of plant-pollinator interactions.


Asunto(s)
Extinción Biológica , Conducta Alimentaria/fisiología , Cadena Alimentaria , Insectos/fisiología , Polinización/fisiología , Migración Animal/fisiología , Animales , Flores , Proyectos Piloto , Dispersión de las Plantas , Especificidad de la Especie
11.
PeerJ ; 6: e6025, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533311

RESUMEN

Hoverflies (Diptera: Syrphidae) are among the most important pollinators, although they attract less attention than bees. They are usually thought to be rather opportunistic flower visitors, although previous studied demonstrated that they show colour preferences and their nectar feeding is affected by morphological constraints related to flower morphology. Despite the growing appreciation of hoverflies and other non-bee insects as pollinators, there is a lack of community-wide studies of flower visitation by syrphids. The aim of this paper is to provide a detailed analysis of flower visitation patterns in a species rich community of syrphids in a Central European grassland and to evaluate how species traits shape the structure of the plant-hoverfly flower visitation network. We found that different species varied in the level of specialisation, and while some species visited a similar spectre of flowers, others partitioned resources more strongly. There was a consistent difference in both specialisation and flower preferences between three syrphid subfamilies. Eristalinae and Pipizinae were more specialised than Syrphinae. Trait-based analyses showed that relative flower visitation (i) increased with plant height, but most strongly in Eristalinae; (ii) increased with inflorescence size in small species from all three subfamilies, but was independent of inflorescence size in large species of Eristalinae and Syrphinae; and (iii) depended on flower colour, but in a subfamily-specific way. Eristalinae showed the strongest flower colour preferences for white flowers, Pipizinae visited mostly white and yellow flowers, while Syrphinae were less affected by flower colour. Exploration of the structure of the plant-hoverfly flower visitation network showed that the network was both modular and nested. We also found that there were almost no differences in specialisation and relative visitation frequency between males and females. Overall, we showed that flower visitation in syrphids was affected by phylogenetic relatedness, body size of syrphids and several plant traits.

12.
PeerJ ; 6: e4998, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942686

RESUMEN

Visitation of plants by different pollinators depends on individual plant traits, spatial context, and other factors. A neglected aspect of small-scale variation of plant-pollinator interactions is the role of vertical position of flowers. We conducted a series of experiments to study vertical stratification of plant-pollinator interactions in a dry grassland. We observed flower visitors on cut inflorescences of Centaurea scabiosa and Inula salicina placed at different heights above ground in two types of surrounding vegetation: short and tall. Even at such a small-scale, we detected significant shift in total visitation rate of inflorescences in response to their vertical position. In short vegetation, inflorescences close to the ground were visited more frequently, while in tall vegetation, inflorescences placed higher received more visits. Moreover, we found major differences in the composition of the pollinator community on flowers at different heights. In a second experiment, we measured flower visitation rate in inflorescences of Salvia verticillata of variable height. Total flower visitation rate increased markedly with inflorescence height in this case. Data on seed set of individual plants provide evidence for a corresponding positive pollinator-mediated selection on increased inflorescence height. Overall, our results demonstrate strong vertical stratification of plant-pollinator interactions at the scale of mere decimetres. This may have important ecological as well as evolutionary implications.

13.
PLoS One ; 12(11): e0187976, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29136042

RESUMEN

Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction.


Asunto(s)
Conducta Alimentaria , Flores , Polinización , Animales , Abejas/fisiología
14.
PLoS One ; 11(3): e0150393, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27008409

RESUMEN

Understanding the potential of animals to immediately respond to changing temperatures is imperative for predicting the effects of climate change on biodiversity. Ectothermic animals, such as insects, use behavioural thermoregulation to keep their body temperature within suitable limits. It may be particularly important at warm margins of species occurrence, where populations are sensitive to increasing air temperatures. In the field, we studied thermal requirements and behavioural thermoregulation in low-altitude populations of the Satyrinae butterflies Erebia aethiops, E. euryale and E. medusa. We compared the relationship of individual body temperature with air and microhabitat temperatures for the low-altitude Erebia species to our data on seven mountain species, including a high-altitude population of E. euryale, studied in the Alps. We found that the grassland butterfly E. medusa was well adapted to the warm lowland climate and it was active under the highest air temperatures and kept the highest body temperature of all species. Contrarily, the woodland species, E. aethiops and a low-altitude population of E. euryale, kept lower body temperatures and did not search for warm microclimates as much as other species. Furthermore, temperature-dependence of daily activities also differed between the three low-altitude and the mountain species. Lastly, the different responses to ambient temperature between the low- and high-altitude populations of E. euryale suggest possible local adaptations to different climates. We highlight the importance of habitat heterogeneity for long-term species survival, because it is expected to buffer climate change consequences by providing a variety of microclimates, which can be actively explored by adults. Alpine species can take advantage of warm microclimates, while low-altitude grassland species may retreat to colder microhabitats to escape heat, if needed. However, we conclude that lowland populations of woodland species may be more severely threatened by climate warming because of the unavailability of relatively colder microclimates.


Asunto(s)
Conducta Animal , Regulación de la Temperatura Corporal , Mariposas Diurnas/fisiología , Frío , Calor , Altitud , Animales , Clima , Especificidad de la Especie
15.
Ecol Lett ; 18(9): 954-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26206470

RESUMEN

Dispersal and the underlying movement behaviour are processes of pivotal importance for understanding and predicting metapopulation and metacommunity dynamics. Generally, dispersal decisions are condition-dependent and rely on information in the broad sense, like the presence of conspecifics. However, studies on metacommunities that include interspecific interactions generally disregard condition-dependence. Therefore, it remains unclear whether and how dispersal in metacommunities is condition-dependent and whether rules derived from single-species contexts can be scaled up to (meta)communities. Using experimental protist metacommunities, we show how dispersal and movement depend on and are adjusted by the strength of interspecific interactions. We found that the predicting movement and dispersal in metacommunities requires knowledge on behavioural responses to intra- and interspecific interaction strengths. Consequently, metacommunity dynamics inferred directly from single-species metapopulations without taking interspecific interactions into account are likely flawed. Our work identifies the significance of condition-dependence for understanding metacommunity dynamics, stability and the coexistence and distribution of species.


Asunto(s)
Ecosistema , Locomoción , Modelos Biológicos , Paramecium aurelia/fisiología , Tetrahymena/fisiología , Biota , Dinámica Poblacional
16.
PLoS One ; 9(8): e99355, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25119999

RESUMEN

The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Tamaño Corporal , Simulación por Computador , Modelos Biológicos , Procesos Estocásticos
17.
Oecologia ; 176(1): 183-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25085443

RESUMEN

Structurally complex habitats provide cover and may hinder the movement of animals. In predator-prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an 'anti-refuge' effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator-prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.


Asunto(s)
Ecosistema , Cadena Alimentaria , Insectos/fisiología , Zooplancton/fisiología , Animales , República Checa , Modelos Lineales , Mortalidad , Conducta Predatoria/fisiología , Estaciones del Año
18.
PeerJ ; 2: e389, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24883250

RESUMEN

Freshwater food webs are dominated by aquatic invertebrates whose trophic relationships are often poorly known. Here, I used laboratory experiments to study the role of a water bug, Sigara striata, as a potential predator and prey in food webs of stagnant waters. Multiple-choice predation experiment revealed that Sigara, which had been considered mostly herbivorous, also consumed larvae of Chironomus midges. Because they often occur in high densities and are among the most ubiquitous aquatic insects, Sigara water bugs may be important predators in fresh waters. A second experiment tested the role of Sigara as a potential prey for 13 common invertebrate predators. Mortality of Sigara inflicted by different predators varied widely, especially depending on body mass, foraging mode (ambush/searching) and feeding mode (chewing/suctorial) of the predators. Sigara was highly vulnerable to ambush predators, while searching predators caused on average 8.1 times lower mortality of Sigara. Additionally, suctorial predators consumed on average 6.6 times more Sigara individuals than chewing predators, which supports previous results hinting on potentially different predation pressures of these two types of predators on prey populations. The importance of these two foraging-related traits demonstrates the need to move from body mass based to multiple trait based descriptions of food web structure. Overall, the results suggests that detailed experimental studies of common but insufficiently known species can significantly enhance our understanding of food web structure.

19.
J Therm Biol ; 41: 50-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24679972

RESUMEN

Mountain butterflies have evolved efficient thermoregulation strategies enabling their survival in marginal conditions with short flight season and unstable weather. Understanding the importance of their behavioural thermoregulation by habitat use can provide novel information for predicting the fate of alpine Lepidoptera and other insects under ongoing climate change. We studied the link between microhabitat use and thermoregulation in adults of seven species of a butterfly genus Erebia co-occurring in the Austrian Alps. We captured individuals in the field and measured their body temperature in relation to microhabitat and air temperature. We asked whether closely related species regulate their body temperature differently, and if so, what is the effect of behaviour, species traits and individual traits on body to air and body to microhabitat temperature differences. Co-occurring species differed in mean body temperature. These differences were driven by active microhabitat selection by individuals and also by species-specific habitat preferences. Species inhabiting grasslands and rocks utilised warmer microclimates to maintain higher body temperature than woodland species. Under low air temperatures, species of rocky habitats heated up more effectively than species of grasslands and woodlands which allowed them to stay active in colder weather. Species morphology and individual traits play rather minor roles in the thermoregulatory differences; although large species and young individuals maintained higher body temperature. We conclude that diverse microhabitat conditions at small spatial scales probably contribute to sympatric occurrence of closely related species with different thermal demands and that preserving heterogeneous conditions in alpine landscapes might mitigate detrimental consequences of predicted climate change.


Asunto(s)
Biodiversidad , Regulación de la Temperatura Corporal , Mariposas Diurnas/fisiología , Altitud , Animales , Temperatura
20.
J Anim Ecol ; 82(5): 1031-41, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23869526

RESUMEN

1. Predation is often size selective, but the role of other traits of the prey and predators in their interactions is little known. This hinders our understanding of the causal links between trophic interactions and the structure of animal communities. Better knowledge of trophic traits underlying predator-prey interactions is also needed to improve models attempting to predict food web structure and dynamics from known species traits. 2. We carried out laboratory experiments with common freshwater macroinvertebrate predators (diving beetles, dragonfly and damselfly larvae and water bugs) and their prey to assess how body size and traits related to foraging (microhabitat use, feeding mode and foraging mode) and to prey vulnerability (microhabitat use, activity and escape behaviour) affect predation strength. 3. The underlying predator-prey body mass allometry characterizing mean prey size and total predation pressure was modified by feeding mode of the predators (suctorial or chewing). Suctorial predators fed upon larger prey and had ˜3 times higher mass-specific predation rate than chewing predators of the same size and may thus have stronger effect on prey abundance. 4. Strength of individual trophic links, measured as mortality of the focal prey caused by the focal predator, was determined jointly by the predator and prey body mass and their foraging and vulnerability traits. In addition to the feeding mode, interactions between prey escape behaviour (slow or fast), prey activity (sedentary or active) and predator foraging mode (searching or ambush) strongly affected prey mortality. Searching predators was ineffective in capturing fast-escape prey in comparison with the remaining predator-prey combinations, while ambush predators caused higher mortality than searching predators and the difference was larger in active prey. 5. Our results imply that the inclusion of the commonly available qualitative data on foraging traits of predators and vulnerability traits of prey could substantially increase biological realism of food web descriptions.


Asunto(s)
Organismos Acuáticos/fisiología , Conducta Animal/fisiología , Peso Corporal/fisiología , Invertebrados/fisiología , Conducta Predatoria , Animales , Anuros , Carnivoría/fisiología , Chironomidae , Cladóceros , Escarabajos/fisiología , Culicidae , Cadena Alimentaria , Agua Dulce , Heterópteros/fisiología , Insectos , Isópodos , Larva/fisiología , Locomoción , Lymnaea , Mortalidad , Odonata/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...