Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Yeast ; 41(4): 256-278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37642136

RESUMEN

Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcriptome, fundamental questions regarding mitochondrial gene expression and splicing remain unresolved, even in the model eukaryote Saccharomyces cerevisiae. Long-read sequencing could address these fundamental questions. Therefore, a method for the enrichment of mitochondrial RNA and sequencing using Nanopore technology was developed, enabling the resolution of splicing of polycistronic genes and the quantification of spliced RNA. This method successfully captured the full mitochondrial transcriptome and resolved RNA splicing patterns with single-base resolution and was applied to explore the transcriptome of S. cerevisiae grown with glucose or ethanol as the sole carbon source, revealing the impact of growth conditions on mitochondrial RNA expression and splicing. This study uncovered a remarkable difference in the turnover of Group II introns between yeast grown in either mostly fermentative or fully respiratory conditions. Whether this accumulation of introns in glucose medium has an impact on mitochondrial functions remains to be explored. Combined with the high tractability of the model yeast S. cerevisiae, the developed method enables to monitor mitochondrial transcriptome responses in a broad range of relevant contexts, including oxidative stress, apoptosis and mitochondrial diseases.


Asunto(s)
ARN , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN/metabolismo , Intrones , Transcriptoma , ARN Mitocondrial/metabolismo , Empalme del ARN , Mitocondrias/genética , Mitocondrias/metabolismo , Análisis de Secuencia de ARN , Glucosa/metabolismo
2.
Nature ; 619(7970): 555-562, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380776

RESUMEN

Whole-genome synthesis provides a powerful approach for understanding and expanding organism function1-3. To build large genomes rapidly, scalably and in parallel, we need (1) methods for assembling megabases of DNA from shorter precursors and (2) strategies for rapidly and scalably replacing the genomic DNA of organisms with synthetic DNA. Here we develop bacterial artificial chromosome (BAC) stepwise insertion synthesis (BASIS)-a method for megabase-scale assembly of DNA in Escherichia coli episomes. We used BASIS to assemble 1.1 Mb of human DNA containing numerous exons, introns, repetitive sequences, G-quadruplexes, and long and short interspersed nuclear elements (LINEs and SINEs). BASIS provides a powerful platform for building synthetic genomes for diverse organisms. We also developed continuous genome synthesis (CGS)-a method for continuously replacing sequential 100 kb stretches of the E. coli genome with synthetic DNA; CGS minimizes crossovers1,4 between the synthetic DNA and the genome such that the output for each 100 kb replacement provides, without sequencing, the input for the next 100 kb replacement. Using CGS, we synthesized a 0.5 Mb section of the E. coli genome-a key intermediate in its total synthesis1-from five episomes in 10 days. By parallelizing CGS and combining it with rapid oligonucleotide synthesis and episome assembly5,6, along with rapid methods for compiling a single genome from strains bearing distinct synthetic genome sections1,7,8, we anticipate that it will be possible to synthesize entire E. coli genomes from functional designs in less than 2 months.


Asunto(s)
Cromosomas Artificiales Bacterianos , ADN , Escherichia coli , Genoma Bacteriano , Biología Sintética , Humanos , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Genoma Bacteriano/genética , Plásmidos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Biología Sintética/métodos , Cromosomas Artificiales Bacterianos/genética , Exones , Intrones , G-Cuádruplex , Elementos de Nucleótido Esparcido Largo/genética , Elementos de Nucleótido Esparcido Corto/genética , Oligodesoxirribonucleótidos/biosíntesis , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/metabolismo , Factores de Tiempo
3.
Nat Biotechnol ; 38(3): 365-373, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31819260

RESUMEN

Protein phosphorylation is a key post-translational modification regulating protein function in almost all cellular processes. Although tens of thousands of phosphorylation sites have been identified in human cells, approaches to determine the functional importance of each phosphosite are lacking. Here, we manually curated 112 datasets of phospho-enriched proteins, generated from 104 different human cell types or tissues. We re-analyzed the 6,801 proteomics experiments that passed our quality control criteria, creating a reference phosphoproteome containing 119,809 human phosphosites. To prioritize functional sites, we used machine learning to identify 59 features indicative of proteomic, structural, regulatory or evolutionary relevance and integrate them into a single functional score. Our approach identifies regulatory phosphosites across different molecular mechanisms, processes and diseases, and reveals genetic susceptibilities at a genomic scale. Several regulatory phosphosites were experimentally validated, including identifying a role in neuronal differentiation for phosphosites in SMARCC2, a member of the SWI/SNF chromatin-remodeling complex.


Asunto(s)
Biología Computacional/métodos , Proteínas de Unión al ADN/química , Fosfoproteínas/metabolismo , Proteómica/métodos , Factores de Transcripción/química , Sitios de Unión , Línea Celular , Curaduría de Datos , Bases de Datos de Proteínas , Células HeLa , Humanos , Aprendizaje Automático , Espectrometría de Masas , Neurogénesis , Fosfoproteínas/química , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA