Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 300(1): 434-60, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16965768

RESUMEN

The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.


Asunto(s)
Genoma , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/crecimiento & desarrollo , Erizos de Mar/crecimiento & desarrollo , Animales , Axones/fisiología , Conexinas/genética , Electrofisiología , Humanos , Larva/fisiología , Mamíferos , Neuronas/fisiología , Filogenia , Erizos de Mar/clasificación , Erizos de Mar/genética , Sinapsis/fisiología , Factores de Transcripción/genética
2.
Development ; 128(22): 4393-404, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11714666

RESUMEN

We have identified a single homolog of goosecoid, SpGsc, that regulates cell fates along both the animal-vegetal and oral-aboral axes of sea urchin embryos. SpGsc mRNA is expressed briefly in presumptive mesenchyme cells of the approximately 200-cell blastula and, beginning at about the same time, accumulates in the presumptive oral ectoderm through pluteus stage. Loss-of-function assays with morpholine-substituted antisense oligonucleotides show that SpGsc is required for endoderm and pigment cell differentiation and for gastrulation. These experiments and gain-of-function tests by mRNA injection show that SpGsc is a repressor that antagonizes aboral ectoderm fate specification and promotes oral ectoderm differentiation. We show that SpGsc competes for binding to specific cis elements with SpOtx, a ubiquitous transcription activator that promotes aboral ectoderm differentiation. Moreover, SpGsc represses transcription in vivo from an artificial promoter driven by SpOtx. As SpOtx appears long before SpGsc transcription is activated, we propose that SpGsc diverts ectoderm towards oral fate by repressing SpOtx target genes. Based on the SpGsc-SpOtx example and other available data, we propose that ectoderm is first specified as aboral by broadly expressed activators, including SpOtx, and that the oral region is subsequently respecified by the action of negative regulators, including SpGsc. Accumulation of SpGsc in oral ectoderm depends on cell-cell interactions initiated by nuclear beta-catenin function, which is known to be required for specification of vegetal tissues, because transcripts are undetectable in dissociated or in cadherin mRNA-injected embryos. This is the first identified molecular mechanism underlying the known dependence of oral-aboral ectoderm polarity on intercellular signaling.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Erizos de Mar/embriología , Transactivadores , Factores de Transcripción , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Proteínas del Citoesqueleto/metabolismo , Sistema Digestivo/embriología , Endodermo/citología , Gástrula/citología , Regulación del Desarrollo de la Expresión Génica , Proteína Goosecoide , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Boca/embriología , Factores de Transcripción Otx , Pigmentación , Unión Proteica , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , Transcripción Genética , beta Catenina
3.
Genesis ; 30(4): 239-49, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11536430

RESUMEN

The emergence of four genes encoding myogenic bHLH transcription factors in the stem vertebrate is a unique feature of vertebrate evolution that led to the acquisition of new target genes and novel regulatory circuits for skeletal muscle formation. One unresolved question is the extent to which each factor has evolved specialized functions for regulating muscle gene transcription. We have developed a system using differentiated myogenin (-/-) embryonic stem (ES) cells to determine whether other myogenic factors can replace myogenin's function in muscle differentiation. Previously, we showed that constitutively expressed myogenin restores myofiber formation in differentiated myogenin (-/-) ES cells, but constitutively expressed MyoD does not. Here, we confirm the distinction between myogenin and MyoD using another expression vector and show that constitutively expressed MRF4 leads to myofiber formation in myogenin's absence. Our analysis reveals a correlation between the levels of myogenin plus MRF4 and the extent of myofiber formation, suggesting a synergy between these factors. The results indicate that unlike MyoD, MRF4 plays a role similar to myogenin in skeletal muscle differentiation.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/embriología , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/metabolismo , Miogenina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Fusión Celular , Línea Celular , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Músculo Esquelético/citología , Proteína MioD/genética , Miofibrillas/metabolismo , Factores Reguladores Miogénicos/genética , Miogenina/genética , Cadenas Pesadas de Miosina/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Dev Biol ; 232(2): 424-38, 2001 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11401403

RESUMEN

Strongylocentrotus purpuratus Otx (SpOtx) is required simultaneously in sea urchin development for the activation of endo16 in the vegetal plate and for the activation of spec2a in the aboral ectoderm. Because Otx binding sites alone do not appear to be responsible for the spatially restricted expression of spec2a, additional DNA elements were sought. We show here that consensus Otx binding sites fused to basal promoters are sufficient to activate CAT reporter gene expression in all cell types, although expression in endomesoderm progenitors is enhanced. On the other hand, three non-Otx elements derived from the spec2a enhancer are needed together with Otx sites for specifically aboral ectoderm expression. A DNA element termed Y/CBF, lying just downstream from an Otx site within the spec2a enhancer, mediates general activation in the ectoderm. A second element lying between the Otx and Y/CBF sites, called OER, functions to prevent expression in the oral ectoderm. A third site, called ENR, overlapping another Otx site, is required to repress endoderm expression. Three distinct DNA binding proteins interact sequence specifically at the Y/CBF, OER, and ENR elements. The spec2a enhancer thus consists of closely linked activator and repressor elements that function collectively to cause expression of the spec2a gene in the aboral ectoderm.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Erizos de Mar/embriología , Erizos de Mar/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Tipificación del Cuerpo/genética , Cartilla de ADN/genética , Elementos de Facilitación Genéticos , Genes Reguladores , Genes Reporteros , Datos de Secuencia Molecular , Factores de Transcripción Otx , Regiones Promotoras Genéticas
5.
Dev Biol ; 229(2): 340-50, 2001 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11203698

RESUMEN

myogenin (-/-) mice display severe skeletal muscle defects despite expressing normal levels of MyoD. The failure of MyoD to compensate for myogenin could be explained by distinctions in protein function or by differences in patterns of gene expression. To distinguish between these two possibilities, we compared the abilities of constitutively expressed myogenin and MyoD to support muscle differentiation in embryoid bodies made from myogenin (-/-) ES cells. Differentiated embryoid bodies from wild-type embryonic stem (ES) cells made extensive skeletal muscle, but embryoid bodies from myogenin (-/-) ES cells had greatly attenuated muscle-forming capacity. The inability of myogenin (-/-) ES cells to generate muscle was independent of endogenous MyoD expression. Skeletal muscle was restored in myogenin (-/-) ES cells by constitutive expression of myogenin. In contrast, constitutive expression of MyoD resulted in only marginal enhancement of skeletal muscle, although myocyte numbers greatly increased. The results indicated that constitutive expression of MyoD led to enhanced myogenic commitment of myogenin (-/-) cells but also indicated that committed cells were impaired in their ability to form muscle sheets without myogenin. Thus, despite their relatedness, myogenin's role in muscle formation is distinct from that of MyoD, and the distinction cannot be explained merely by differences in their expression properties.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/embriología , Proteína MioD/fisiología , Miogenina/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular , División Celular , Electroporación , Secuencias Hélice-Asa-Hélice , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Proteína MioD/genética , Miogenina/genética , Cadenas Pesadas de Miosina/análisis , Cadenas Pesadas de Miosina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Transcripción Genética , Transfección
6.
Genes Dev ; 15(1): 24-9, 2001 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11156601

RESUMEN

math5 is a murine orthologue of atonal, a bHLH proneural gene essential for the formation of photoreceptors and chordotonal organs in Drosophila. The expression of math5 coincides with the onset of retinal ganglion cell (RGC) differentiation. Targeted deletion of math5 blocks the initial differentiation of 80% of RGCs and results in an increase in differentiated amacrine cells. Furthermore, the absence of math5 abolishes the retinal expression of brn-3b and the formation of virtually all brn-3b-expressing RGCs. These results imply that math5 is a proneural gene essential for RGC differentiation and that math5 acts upstream to activate brn-3b-dependent differentiation processes in RGCs.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Retina/fisiología , Células Ganglionares de la Retina/citología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Colina O-Acetiltransferasa/análisis , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila , Secuencias Hélice-Asa-Hélice , Isoenzimas/análisis , Proteínas de la Membrana/análisis , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteína Quinasa C/análisis , Proteína Quinasa C-alfa , Proteínas Qa-SNARE , Retina/citología , Células Ganglionares de la Retina/fisiología , Factor de Transcripción Brn-3 , Factor de Transcripción Brn-3B , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
7.
Nucleic Acids Res ; 29(24): 4983-93, 2001 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11812828

RESUMEN

Retinal development occurs in mice between embryonic day E11.5 and post-natal day P8 as uncommitted neuroblasts assume retinal cell fates. The genetic pathways regulating retinal development are being identified but little is understood about the global networks that link these pathways together or the complexity of the expressed gene set required to form the retina. At E14.5, the retina contains mostly uncommitted neuroblasts and newly differentiated neurons. Here we report a sequence analysis of an E14.5 retinal cDNA library. To date, we have archived 15 268 ESTs and have annotated 9035, which represent 5288 genes. The fraction of singly occurring ESTs as a function of total EST accrual suggests that the total number of expressed genes in the library could approach 27 000. The 9035 ESTs were categorized by their known or putative functions. Representation of the genes involved in eye development was significantly higher in the retinal clone set compared with the NIA mouse 15K cDNA clone set. Screening with a microarray containing 864 cDNA clones using wild-type and brn-3b (-/-) retinal cDNA probes revealed a potential regulatory linkage between the transcription factor Brn-3b and expression of GAP-43, a protein associated with axon growth. The retinal EST database will be a valuable platform for gene expression profiling and a new source for gene discovery.


Asunto(s)
Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Retina/metabolismo , Animales , Proteínas de Ciclo Celular/genética , ADN Complementario/genética , Proteína GAP-43/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Retina/embriología , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética
8.
Mol Cell Neurosci ; 16(2): 141-56, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10924257

RESUMEN

The POU domain transcription factor Brn-3b (also called Brn-3.2) is essential for the normal development of retinal ganglion cells (RGCs) in the mouse. Without Brn-3b, RGCs commit to their fate and migrate to the ganglion cell layer, but most cells die during fetal development. An earlier report (L. Gan et al., 1999, Dev. Biol. 210, 469-480) suggested that cell death was caused by abnormal axon formation. Here, we use retinal explants from wild-type and mutant embryos to show that brn-3b-deficient RGCs are not properly polarized and tend to form dendrites rather than axons. Compared with wild-type explants, neurites of RGCs from brn-3b-deficient retinal explants grew slower, were shorter, and did not fasciculate properly. Mutant neurites had more microtubules than wild-type controls, and the arrangement of microtubules and neurofilaments was characteristic of dendrites rather than axons. Neurites from individual mutant RGCs displayed abnormal polarity and had dendrite-like branches extending outward from their main axis. Most mutant RGCs exhibited abnormal migratory behavior, and their neurites labeled intensely with the dendrite marker MAP-2. A small number of mutant RGCs were not migratory, and their neurites were longer and labeled positively for the axon marker tau-1, suggesting that some RGCs were not as severely affected by the absence of Brn-3b as others. Although tau-1 was not observed in most mutant neurites, it did accumulate in mutant cell bodies, implying that the absence of Brn-3b caused a defect in axon transport. Thus, Brn-3b appears to control the activity of genes that function in establishing RGC polarity, and without Brn-3b, RGCs cannot extend normal axons.


Asunto(s)
Axones/fisiología , Polaridad Celular/fisiología , Proteínas de Unión al ADN/genética , Células Ganglionares de la Retina/ultraestructura , Factores de Transcripción/genética , Animales , Axones/química , Células Cultivadas , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Neuritas/fisiología , Proteínas de Neurofilamentos/fisiología , Factores del Dominio POU , Estructura Terciaria de Proteína , Células Ganglionares de la Retina/química , Factor de Transcripción Brn-3 , Factor de Transcripción Brn-3B , Factores de Transcripción/análisis , Factores de Transcripción/química , Proteínas tau/análisis , Proteínas tau/genética
9.
Dev Biol ; 224(1): 29-41, 2000 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10898959

RESUMEN

Myogenin and MRF4 are skeletal muscle-specific bHLH transcription factors critical for muscle development. In addition to a variety of skeletal muscle defects, embryos homozygous for mutations in myogenin or MRF4 display phenotypes in the thoracic skeleton, including rib fusions and sternal defects. These skeletal defects are likely to be secondary because myogenin and MRF4 are not expressed in the rib cartilage or sternum. In this study, the requirement for myogenin and MRF4 in thoracic skeletal development was further examined. When a hypomorphic allele of myogenin and an MRF4-null mutation were placed together, the severity of the thoracic skeletal defects was greatly increased and included extensive rib cartilage fusion and fused sternebrae. Additionally, new rib defects were observed in myogenin/MRF4 compound mutants, including a failure of the rib cartilage to contact the sternum. These results suggested that myogenin and MRF4 share overlapping functions in thoracic skeletal formation. Spatial expression patterns of skeletal muscle-specific markers in myogenin- and MRF4-mutant embryos revealed early skeletal muscle defects not previously reported. MRF4-/- mice displayed abnormal intercostal muscle morphology, including bifurcation and fusion of adjacent intercostals. myogenin/MRF4-mutant combinations displayed ventral myotome defects, including a failure to express normal levels of myf5. The results suggested that the early muscle defects observed in myogenin and MRF4 mutants may cause subsequent thoracic skeletal defects, and that myogenin and MRF4 have overlapping functions in ventral myotome differentiation and intercostal muscle morphogenesis.


Asunto(s)
Músculos Intercostales/embriología , Factores Reguladores Miogénicos/genética , Miogenina/genética , Somitos/metabolismo , Tórax/embriología , Alelos , Animales , Cruzamientos Genéticos , Desmina/metabolismo , Hibridación in Situ , Músculos Intercostales/anomalías , Músculos Intercostales/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Factores Reguladores Miogénicos/metabolismo , Miogenina/metabolismo , Costillas/anomalías , Costillas/embriología , Esternón/anomalías , Esternón/embriología , Tórax/anomalías , Tórax/metabolismo
10.
Dev Biol ; 219(2): 287-98, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10694423

RESUMEN

The basic helix-loop-helix (bHLH) transcription factors-MyoD, Myf5, myogenin, and MRF4-can each activate the skeletal muscle-differentiation program in transfection assays. However, their functions during embryogenesis, as revealed by gene-knockout studies in mice, are distinct. MyoD and Myf5 have redundant functions in myoblast specification, whereas myogenin and either MyoD or MRF4 are required for differentiation. Paradoxically, myoblasts from myogenin mutant or MyoD/MRF4 double-mutant neonates differentiate normally in vitro, despite their inability to differentiate in vivo, suggesting that the functions of the myogenic bHLH factors are influenced by the cellular environment and that the specific myogenic defects observed in mutant mice do not necessarily reflect essential functions of these factors. Understanding the individual roles of these factors is further complicated by their ability to cross-regulate one another's expression. To investigate the functions of Myf5 in the absence of contributions from other myogenic bHLH factors, we generated triple-mutant mice lacking myogenin, MyoD, and MRF4. These mice appear to contain a normal number of myoblasts, but in contrast to myogenin or MyoD/MRF4 mutants, differentiated muscle fibers fail to form in vivo and myoblasts from neonates of this triple-mutant genotype are unable to differentiate in vitro. These results suggest that physiological levels of Myf5 are insufficient to activate the myogenic program in the absence of other myogenic factors and suggest that specialized functions have evolved for the myogenic bHLH factors to switch on the complete program of muscle gene expression.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/embriología , Transactivadores , Animales , Animales Recién Nacidos , Secuencia de Bases , Huesos/anomalías , Diferenciación Celular , Cartilla de ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Secuencias Hélice-Asa-Hélice/genética , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/anomalías , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Transfección
11.
Dev Genes Evol ; 210(2): 73-81, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10664150

RESUMEN

Members of the Tcf/Lef family interact with beta-catenin to activate programs of gene expression during development. Recently beta-catenin was shown to be essential for establishing cell fate along the animal-vegetal axis of the sea urchin embryo. To examine the role of Tcf/Lef in sea urchins we cloned a Strongylocentrotus purpuratus Tcf/Lef homolog. Expression of SpTcf/Lef was maximal when beta-catenin became localized to nuclei of vegetal blastomeres, consistent with its acting in combination with beta-catenin to specify vegetal cell fates. Expression of a dominant-negative SpTcf/Lef inhibited primary and secondary mesenchyma, endoderm, and aboral ectoderm formation in a manner similar to that observed when nuclear accumulation of beta-catenin was prevented. Our results suggest that SpTcf/Lef functions by interacting with beta-catenin to specify cell fates along the sea urchin animal-vegetal axis.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Erizos de Mar/embriología , Transactivadores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Linaje de la Célula , Clonación Molecular , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Factor de Unión 1 al Potenciador Linfoide , Microinyecciones , Datos de Secuencia Molecular , Mutación , Filogenia , ARN Mensajero/metabolismo , Erizos de Mar/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , beta Catenina
12.
Biochem Biophys Res Commun ; 262(3): 677-84, 1999 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-10471385

RESUMEN

A mouse line was generated that expressed a gene trap reporter construct, betageo, in a dynamic pattern during embryonic development. Differential expression was seen within the developing eyes, limbs, heart, neural tube, and skeleton. Two transcripts were cloned that contained endogenous sequences fused to the gene trap vector sequence. Analysis of the endogenous sequences revealed that the reporter integrated within a gene belonging to a small group of eukaryotic superfamily I helicases. Unexpectedly, the majority of transcripts produced from the trapped locus were not affected by the insertion of the reporter. Although the function of the trapped helicase gene is unknown, its complex transcription patterns and widespread spatial-temporal distribution suggest that the gene product plays a role in RNA metabolism in multiple tissues and organs within the developing embryo.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Técnicas Genéticas , ARN Helicasas/genética , ARN Helicasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Huesos/embriología , Huesos/enzimología , Encéfalo/enzimología , Línea Celular , Clonación Molecular , Secuencia Conservada , Desarrollo Embrionario y Fetal , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Humanos , Mesodermo/enzimología , Mesodermo/fisiología , Ratones , Datos de Secuencia Molecular , Mutación , Sistemas de Lectura Abierta , ARN Helicasas/química , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética , Transfección , beta-Galactosidasa/genética
13.
Dev Biol ; 212(2): 425-39, 1999 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10433832

RESUMEN

We show here that the homeodomain transcription factor SpOtx is required for endoderm and aboral ectoderm formation during sea urchin embryogenesis. SpOtx target genes were repressed by fusing the SpOtx homeodomain to an active repression domain of Drosophila Engrailed. The Engrailed-SpOtx fusion protein reduced the expression of endoderm- and aboral ectoderm-specific genes and inhibited the formation of endoderm and aboral ectoderm cell types. Coexpressing activated beta-catenin with Engrailed-SpOtx did not overcome the inhibition of endoderm and aboral ectoderm formation, suggesting that SpOtx functioned either downstream of or parallel to nuclear beta-catenin. Embryos expressing C-cadherin, which blocks nuclear translocation of beta-catenin, have defects in endoderm and aboral ectoderm formation. Coexpressing SpOtx with C-cadherin restored aboral ectoderm-specific gene expression and aboral ectoderm morphology, but with C-cadherin present, SpOtx was not sufficient for endoderm formation. Our results show that SpOtx plays a key role in the activation of aboral ectoderm- and endoderm-specific gene expression and, in addition, suggest that SpOtx mediates some of beta-catenin's functions in endoderm and aboral ectoderm formation.


Asunto(s)
Tipificación del Cuerpo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Erizos de Mar/embriología , Transactivadores , Factores de Transcripción/metabolismo , Animales , Cadherinas/metabolismo , Proteínas del Citoesqueleto/genética , Ectodermo , Endodermo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Factores de Transcripción/genética , beta Catenina
14.
Biotechniques ; 27(1): 154-62, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10407678

RESUMEN

A lacZ transgene, expressed by the myogenin promoter, was introduced into the mouse hypoxanthine phosphoribosyltransferase (Hprt) locus by gene targeting in embryonic stem cells. Embryos between E10.5-E18.5 days were analyzed for expression of the transgene after staining for beta-galactosidase activity. Transgene expression was restricted to the skeletal muscle lineages reflecting a similar temporal and spatial pattern previously demonstrated for the endogenous myogenin gene. Additionally, a second transgene, MC1tk, showed expression in 87% of the clones when targeted to Hprt. This strategy, called targeted transgenesis, provides control for analyzing promoter sequences and for comparing various transgenes expressed by the same promoter.


Asunto(s)
Marcación de Gen , Hipoxantina Fosforribosiltransferasa/genética , Operón Lac/genética , Miogenina/genética , Animales , Arabinofuranosil Uracilo/análogos & derivados , Arabinofuranosil Uracilo/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Marcación de Gen/métodos , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , Histocitoquímica , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Regiones Promotoras Genéticas , Células Madre/metabolismo , Timidina Quinasa/genética , Cromosoma X/genética
15.
Biochem Biophys Res Commun ; 258(2): 229-33, 1999 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-10375352

RESUMEN

Otx proteins comprise an important class of homeodomain-containing transcription factors known for their essential roles in anterior head formation. Here, we briefly review the basic structural features and functional diversity of Otx proteins and describe current views on the evolution of Otx genes in metazoans. A prominent feature of Otx homeodomains is a lysine residue at position 9 of the recognition helix, which confers high-affinity binding to TAATCC/T elements on DNA. Besides their DNA binding properties, surprisingly little is known about how Otx proteins function to activate target genes in selective regions of the embryo. While an essential and ancient role for Otx is to pattern the anterior regions of the head, drawing conclusions about primordial functions is difficult. This is because Otx proteins have been recruited for numerous developmental roles, and derived functions have often evolved to meet the specialized requirements of individual taxonomic groups. In sea urchin embryos, one form of Otx may have been co-opted by the Wnt--catenin signaling pathway. The consequence of such an evolutionary event would be to link a highly conserved signal transduction pathway to a set of novel downstream genes that make use of Otx for their transcription.


Asunto(s)
Evolución Molecular , Proteínas de Homeodominio/metabolismo , Animales , Duplicación de Gen , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Conformación Proteica
16.
Dev Biol ; 210(2): 469-80, 1999 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10357904

RESUMEN

While the mammalian retina is well understood at the anatomical and physiological levels, little is known about the mechanisms that give rise to the retina's highly ordered pattern or its diverse neuronal cell types. Previous investigations have shown that gene disruption of the POU-IV class transcription factor Brn-3b (Brn-3.2) resulted in the loss of most retinal ganglion cells in retinas of postnatal mice. Here, we used lacZ and human placental alkaline phosphatase genes knocked into the brn-3b locus to follow the fate of brn-3b-mutant cells in the developing retina. We found that Brn-3b was not required for the initial commitment of retinal ganglion cell fate or for the migration of ganglion cells to the ganglion cell layer. However, Brn-3b was essential for the normal differentiation of retinal ganglion cells; without it, the cells underwent enhanced apoptosis. Retinal ganglion cells lacking brn-3b extended processes at the appropriate time in development, but these processes were disorganized, resulting in a thinner optic nerve. Explanted retinas from brn-3b-null embryos also extended processes when cultured in vitro, but the processes were shorter and less bundled than in wild-type retinas. Ultrastructural and marker analyses showed that the processes of mutant ganglion cells had dendritic rather than axonal features, suggesting that mutant cells formed dendrites in place of axons. These results suggest that Brn-3b regulates the activity of genes whose products play essential roles in the formation of retinal ganglion cell axons.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fosfatasa Alcalina/genética , Alelos , Animales , Apoptosis , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Desarrollo Embrionario y Fetal , Heterocigoto , Homocigoto , Humanos , Ratones , Ratones Transgénicos , Retina/embriología , Factor de Transcripción Brn-3 , Factor de Transcripción Brn-3B , beta-Galactosidasa/genética
17.
Dev Biol ; 208(1): 44-55, 1999 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10075840

RESUMEN

The myogenic basic helix-loop-helix transcription factor myogenin plays an essential role in the differentiation of skeletal muscle and, secondarily, in rib and sternum formation during mouse development. However, virtually nothing is known about the quantitative requirements for myogenin in these processes. Here, we describe the generation of mice carrying a hypomorphic allele of myogenin, which expresses myogenin transcripts at approximately one-fourth the level of the wild-type myogenin allele. The hypomorphic allele in combination with wild-type and myogenin-null alleles was used to create an allelic series. Embryos representing the complete range of genotypes from homozygous wild type to homozygous null were analyzed for their viability, ability to form normal ribs and sternum, and extent of skeletal muscle differentiation. Embryos carrying the hypomorphic myogenin allele over a wild-type allele were normal. In embryos bearing homozygous hypomorphic alleles, the sternum developed normally and extensive skeletal muscle differentiation occurred. However, muscle hypoplasia and reduced muscle-specific gene expression were apparent in these embryos, and the mice were not viable as neonates. When the hypomorphic allele was placed over a myogenin-null allele, the resulting embryos had sternum defects resembling homozygous myogenin-null embryos, and there was severe muscle hypoplasia. Our results demonstrate that skeletal muscle formation is highly sensitive to the absolute levels of myogenin and that correct sternum formation, skeletal muscle differentiation, and viability each require distinct threshold levels of myogenin.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/crecimiento & desarrollo , Miogenina/genética , Esternón/crecimiento & desarrollo , Alelos , Animales , Desarrollo Embrionario y Fetal , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Secuencias Hélice-Asa-Hélice/genética , Inmunohistoquímica , Ratones , Músculo Esquelético/embriología , Mutación , Fenotipo , ARN Mensajero/metabolismo , Esternón/embriología , Factores de Transcripción/genética
19.
Biochem Biophys Res Commun ; 250(3): 674-81, 1998 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-9784405

RESUMEN

Three mouse lines were generated from independent gene trap events in embryonic stem cells. These lines express a betageo reporter gene in a subset of cells at sites of embryonic hematopoiesis. The 5' breakpoints of all three lines were found to lie in 45S ribosomal RNA transcription units. Expression was apparently linked to metabolic activity in these cells, since the kinetics of expression during embryogenesis matched that of cycling cells with colony forming unit spleen (CFU-S) potential. Expression was not seen in adult tissues unless the animals were treated with hydroxyurea, inducing synchronous entry of quiescent CFU-S into the cell cycle. Our results suggest that there is a subset of hematopoietic stem cells, which when actively proliferating, express the SAbetageo reporter construct from RNA polymerase I transcription units.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , ARN Ribosómico/genética , Animales , Diferenciación Celular/genética , Genes Reporteros , Ratones
20.
Biochem Biophys Res Commun ; 248(3): 738-43, 1998 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-9703997

RESUMEN

Hereditary multiple exostoses (EXT) is a genetically heterogeneous, autosomal dominant skeletal disorder. The gene for EXT1 maps to human chromosome 8q24.1 and encodes an evolutionary conserved protein that is a member of a multigene family. The mouse homolog of human EXT1 protein is 99% similar to its human counterpart. Here, we present the expression profiles of the mouse EXT1 gene. EXT1 mRNA is initially expressed at 6.5 days post-coitum (d.p.c.), which coincides with gastrulation of the mouse embryo. Whole mount in situ hybridization with 10.5 to 12.5 d.p.c. mouse embryos showed a high level of expression of EXT1 mRNA in developing limb buds. Epitope tagging experiments revealed the endoplasmic reticulum localization of EXT1 protein. This localization was consistent with a hydrophobic stretch of amino acids present at the N-terminal end of the EXT1 protein. These results provide novel information on the function of EXT1 and the etiology of hereditary multiple exostoses.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 8 , Exostosis Múltiple Hereditaria/genética , Regulación del Desarrollo de la Expresión Génica , N-Acetilglucosaminiltransferasas , Biosíntesis de Proteínas , Proteínas/genética , Células 3T3 , Animales , Evolución Biológica , Embrión de Mamíferos , Desarrollo Embrionario y Fetal , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Ratones , Ratones Endogámicos C57BL , Familia de Multigenes , Reacción en Cadena de la Polimerasa , ARN Mensajero/biosíntesis , Proteínas Recombinantes/biosíntesis , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA