Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Liver Int ; 39(11): 2042-2045, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31483937

RESUMEN

Hepatocyte nuclear factor 1A (HNF1A) maturity-onset diabetes of the young (MODY) is a monogenetic, autosomal dominantly inherited form of diabetes. HNF1A-MODY is associated with HNF1A-inactivated hepatocellular adenoma (H-HCA) formation. Hepatocellular adenoma (HCA) are benign liver tumours and related complications are rare but serious: hepatic haemorrhage and malignant transformation. Guidelines recommend resection of all HCA in men and do not take any co-occurring metabolic disorders into account. We report a family with HCA preceding diabetes mellitus. Male index patient presented with numerous, irresectable HCA. After initial diagnostic and aetiologic uncertainty HNF1A germline mutation c.815G>A (p.Arg272His) was confirmed 8 years later. No HCA-related complications occurred. His diabetic mother was diagnosed with HCA after severe hepatic haemorrhage years before. HNF1A-MODY should be considered in (non-)diabetic (male) patients with H-HCA. We advocate liver biopsy and, if necessary, genetic analysis to precede any intervention for HCA in males and screening for HCA in HNF1A-MODY patients.


Asunto(s)
Adenoma de Células Hepáticas/genética , Diabetes Mellitus Tipo 2/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Neoplasias Hepáticas/genética , Adenoma de Células Hepáticas/diagnóstico , Adulto , Diabetes Mellitus Tipo 2/diagnóstico , Salud de la Familia , Pruebas Genéticas , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Mutación
3.
Am J Hum Genet ; 104(5): 815-834, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031012

RESUMEN

We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Whole-transcriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.


Asunto(s)
Actinas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Dendritas/patología , Epilepsia/etiología , Células Madre Pluripotentes Inducidas/patología , Mutación , Trastornos del Neurodesarrollo/etiología , Neuronas/patología , Adulto , Niño , Preescolar , Cromatina/genética , Cromatina/metabolismo , Dendritas/metabolismo , Epilepsia/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Masculino , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Adulto Joven
4.
Eur J Hum Genet ; 27(5): 738-746, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30679813

RESUMEN

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9). FBXO11 is part of the SCF (SKP1-cullin-F-box) complex, a multi-protein E3 ubiquitin-ligase complex catalyzing the ubiquitination of proteins destined for proteasomal degradation. Twenty-two variants were identified by next-generation sequencing, comprising 2 in-frame deletions, 11 missense variants, 1 canonical splice site variant, and 8 nonsense or frameshift variants leading to a truncated protein or degraded transcript. The remaining two variants were identified by array-comparative genomic hybridization and consisted of a partial deletion of FBXO11. All individuals had borderline to severe ID and behavioral problems (autism spectrum disorder, attention-deficit/hyperactivity disorder, anxiety, aggression) were observed in most of them. The most relevant common facial features included a thin upper lip and a broad prominent space between the paramedian peaks of the upper lip. Other features were hypotonia and hyperlaxity of the joints. We show that de novo variants in FBXO11 cause a syndromic form of ID. The current series show the power of reverse phenotyping in the interpretation of novel genetic variances in individuals who initially did not appear to have a clear recognizable phenotype.


Asunto(s)
Anomalías Múltiples/genética , Conducta , Proteínas F-Box/genética , Variación Genética , Discapacidad Intelectual/genética , Proteína-Arginina N-Metiltransferasas/genética , Eliminación de Gen , Humanos , Síndrome
5.
Hum Genet ; 138(1): 61-72, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30535804

RESUMEN

ATP2B2 encodes the PMCA2 Ca2+ pump that plays an important role in maintaining ion homeostasis in hair cells among others by extrusion of Ca2+ from the stereocilia to the endolymph. Several mouse models have been described for this gene; mice heterozygous for loss-of-function defects display a rapidly progressive high-frequency hearing impairment. Up to now ATP2B2 has only been reported as a modifier, or in a digenic mechanism with CDH23 for hearing impairment in humans. Whole exome sequencing in hearing impaired index cases of Dutch and Polish origins revealed five novel heterozygous (predicted to be) loss-of-function variants of ATP2B2. Two variants, c.1963G>T (p.Glu655*) and c.955delG (p.Ala319fs), occurred de novo. Three variants c.397+1G>A (p.?), c.1998C>A (p.Cys666*), and c.2329C>T (p.Arg777*), were identified in families with an autosomal dominant inheritance pattern of hearing impairment. After normal newborn hearing screening, a rapidly progressive high-frequency hearing impairment was diagnosed at the age of about 3-6 years. Subjects had no balance complaints and vestibular testing did not yield abnormalities. There was no evidence for retrocochlear pathology or structural inner ear abnormalities. Although a digenic inheritance pattern of hearing impairment has been reported for heterozygous missense variants of ATP2B2 and CDH23, our findings indicate a monogenic cause of hearing impairment in cases with loss-of-function variants of ATP2B2.


Asunto(s)
Biomarcadores/análisis , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Mutación , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Estudios de Seguimiento , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Pronóstico , Adulto Joven
6.
Am J Med Genet A ; 176(12): 2554-2560, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30475435

RESUMEN

Polyamines serve a number of vital functions in humans, including regulation of cellular proliferation, intracellular signaling, and modulation of ion channels. Ornithine decarboxylase 1 (ODC1) is the rate-limiting enzyme in endogenous polyamine synthesis. In this report, we present four patients with a distinct neurometabolic disorder associated with de novo heterozygous, gain-of-function variants in the ODC1 gene. This disorder presents with global developmental delay, ectodermal abnormalities including alopecia, absolute or relative macrocephaly, and characteristic facial dysmorphisms. Neuroimaging variably demonstrates white matter abnormalities, prominent Virchow-Robin spaces, periventricular cysts, and abnormalities of the corpus callosum. Plasma clinical metabolomics analysis demonstrates elevation of N-acetylputrescine, the acetylated form of putrescine, with otherwise normal polyamine levels. Therapies aimed at reducing putrescine levels, including ODC1 inhibitors, dietary interventions, and antibiotics to reduce polyamine production by gastrointestinal flora could be considered as disease-modifying therapies. As the ODC1 gene has been implicated in neoplasia, cancer surveillance may be important in this disorder.


Asunto(s)
Alopecia/genética , Trastorno Dismórfico Corporal/genética , Transportadores de Ácidos Dicarboxílicos/genética , Mutación con Ganancia de Función , Megalencefalia/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Alelos , Alopecia/diagnóstico , Trastorno Dismórfico Corporal/diagnóstico , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Electroencefalografía , Facies , Femenino , Genotipo , Humanos , Masculino , Megalencefalia/diagnóstico , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Neuroimagen/métodos , Pruebas Neuropsicológicas , Fenotipo , Polimorfismo de Nucleótido Simple
7.
Am J Hum Genet ; 98(3): 541-552, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942287

RESUMEN

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidad Intelectual/genética , Transposasas/genética , Adolescente , Adulto , Animales , Trastorno del Espectro Autista/diagnóstico , Niño , Preescolar , Estudios de Cohortes , Regulación hacia Abajo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Modelos Lineales , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Mutación , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Genet Med ; 18(9): 914-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26820064

RESUMEN

PURPOSE: We aimed to determine the prevalence and phenotypic spectrum of NOTCH1 mutations in left-sided congenital heart disease (LS-CHD). LS-CHD includes aortic valve stenosis, a bicuspid aortic valve, coarctation of the aorta, and hypoplastic left heart syndrome. METHODS: NOTCH1 was screened for mutations in 428 nonsyndromic probands with LS-CHD, and family histories were obtained for all. When a mutation was detected, relatives were also tested. RESULTS: In 148/428 patients (35%), LS-CHD was familial. Fourteen mutations (3%; 5 RNA splicing mutations, 8 truncating mutations, 1 whole-gene deletion) were detected, 11 in familial disease (11/148 (7%)) and 3 in sporadic disease (3/280 (1%)). Forty-nine additional mutation carriers were identified among the 14 families, of whom 12 (25%) were asymptomatic. Most of these mutation carriers had LS-CHD, but 9 (18%) had right-sided congenital heart disease (RS-CHD) or conotruncal heart disease (CTD). Thoracic aortic aneurysms (TAAs) occurred in 6 mutation carriers (probands included 6/63 (10%)). CONCLUSION: Pathogenic mutations in NOTCH1 were identified in 7% of familial LS-CHD and in 1% of sporadic LS-CHD. The penetrance is high; a cardiovascular malformation was found in 75% of NOTCH1 mutation carriers. The phenotypic spectrum includes LS-CHD, RS-CHD, CTD, and TAA. Testing NOTCH1 for an early diagnosis in LS-CHD/RS-CHD/CTD/TAA is warranted.Genet Med 18 9, 914-923.


Asunto(s)
Cardiopatías Congénitas/genética , Insuficiencia Cardíaca/genética , Síndrome del Corazón Izquierdo Hipoplásico/genética , Receptor Notch1/genética , Adolescente , Adulto , Anciano , Aorta/fisiopatología , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/fisiopatología , Niño , Preescolar , Femenino , Cardiopatías Congénitas/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Masculino , Persona de Mediana Edad , Mutación , Linaje
9.
Am J Hum Genet ; 96(3): 462-73, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25683120

RESUMEN

Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s).


Asunto(s)
Contractura/genética , Extremidades/fisiopatología , Cara/anomalías , Hipotonía Muscular/genética , Canales de Sodio/genética , Artrogriposis/genética , Disostosis Craneofacial/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Exoma , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Canales Iónicos , Masculino , Proteínas de la Membrana , Mutación Missense , Canales de Sodio/metabolismo
11.
Am J Med Genet A ; 155A(11): 2739-45, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21990140

RESUMEN

A partial deletion of chromosome band 2p25.3 (2pter) is a rarely described cytogenetic aberration in patients with intellectual disability (ID). Using microarrays we identified deletions of 2p25.3, sized 0.37-3.13 Mb, in three adult siblings and three unrelated patients. All patients had ID, obesity or overweight and/or a square-shaped stature without overt facial dysmorphic features. Combining our data with phenotypic and genotypic data of three patients from the literature we defined the minimal region of overlap which contained one gene, i.e., MYT1L. MYT1L is highly transcribed in the mouse embryonic brain where its expression is restricted to postmitotic differentiating neurons. In mouse-induced pluripotent stem cell (iPS) models, MYT1L is essential for inducing functional mature neurons. These resemble excitatory cortical neurons of the forebrain, suggesting a role for MYT1L in development of cognitive functions. Furthermore, MYT1L can directly convert human fibroblasts into functional neurons in conjunction with other transcription factors. MYT1L duplication was previously reported in schizophrenia, indicating that the gene is dosage-sensitive and that shared neurodevelopmental pathways may be affected in ID and schizophrenia. Finally, deletion of MYT1, another member of the Myelin Transcription Factor family involved in neurogenesis and highly similar to MYT1L, was recently described in ID as well. The identification of MYT1L as candidate gene for ID justifies further molecular studies aimed at detecting mutations and for mechanistic studies on its role in neuron development and on neuropathogenic effects of haploinsufficiency.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Cariotipo Anormal , Adolescente , Adulto , Índice de Masa Corporal , Niño , Preescolar , Cromosomas Humanos Par 2/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Haploinsuficiencia , Humanos , Hibridación Fluorescente in Situ , Lactante , Discapacidad Intelectual/metabolismo , Masculino , Metafase , Persona de Mediana Edad , Neurogénesis , Obesidad/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sobrepeso/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...