Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 18(1): 131, 2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400768

RESUMEN

BACKGROUND: The overexpression and purification of membrane proteins is a bottleneck in biotechnology and structural biology. E. coli remains the host of choice for membrane protein production. To date, most of the efforts have focused on genetically tuning of expression systems and shaping membrane composition to improve membrane protein production remained largely unexplored. RESULTS: In E. coli C41(DE3) strain, we deleted two transporters involved in fatty acid metabolism (OmpF and AcrB), which are also recalcitrant contaminants crystallizing even at low concentration. Engineered expression hosts presented an enhanced fitness and improved folding of target membrane proteins, which correlated with an altered membrane fluidity. We demonstrated the scope of this approach by overproducing several membrane proteins (4 different ABC transporters, YidC and SecYEG). CONCLUSIONS: In summary, E. coli membrane engineering unprecedentedly increases the quality and yield of membrane protein preparations. This strategy opens a new field for membrane protein production, complementary to gene expression tuning.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Lípidos/química , Proteínas de la Membrana/biosíntesis , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica , Canales de Translocación SEC/química , Canales de Translocación SEC/genética
2.
PLoS One ; 14(1): e0211156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30657786

RESUMEN

Phytohormones play a major role in plant growth and development. They are in most cases not synthesized in their target location and hence need to be transported to the site of action, by for instance ATP-binding cassette transporters. Within the ATP-binding cassette transporter family, Pleiotropic Drug Resistance transporters are known to be involved in phytohormone transport. Interestingly, PDRs are only present in plants and fungi. In contrast to fungi, there are few biochemical studies of plant PDRs and one major reason is that suitable overexpression systems have not been identified. In this study, we evaluate the expression system Pichia pastoris for heterologous overexpression of PDR genes of the model plant Arabidopsis thaliana. We successfully cloned and expressed the potential phytohormone transporters PDR2 and PDR8 in P. pastoris. Sucrose gradient centrifugation confirmed that the overexpressed proteins were correctly targeted to the plasma membrane of P. pastoris and initial functional studies demonstrated ATPase activity for WBC1. However, difficulties in cloning and heterologous overexpression might be particular obstacles of the PDR family, since cloning and overexpression of White Brown Complex 1, a half-size transporter of the same ABCG subfamily with comparable domain organization, was more easily achieved. We present strategies and highlight critical factors to successfully clone plant PDR genes and heterologously expressed in P. pastoris.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Arabidopsis , Arabidopsis/genética , Clonación Molecular , Expresión Génica , Pichia/genética , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/química , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Pichia/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
PLoS One ; 11(7): e0159778, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472061

RESUMEN

The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Línea Celular , ADN Complementario/genética , Humanos , Unión Proteica , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
5.
Sci Rep ; 6: 18679, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26727488

RESUMEN

Lantibiotics are potent antimicrobial peptides. Nisin is the most prominent member and contains five crucial lanthionine rings. Some clinically relevant bacteria express membrane-associated resistance proteins that proteolytically inactivate nisin. However, substrate recognition and specificity of these proteins is unknown. Here, we report the first three-dimensional structure of a nisin resistance protein from Streptococcus agalactiae (SaNSR) at 2.2 Å resolution. It contains an N-terminal helical bundle, and protease cap and core domains. The latter harbors the highly conserved TASSAEM region, which lies in a hydrophobic tunnel formed by all domains. By integrative modeling, mutagenesis studies, and genetic engineering of nisin variants, a model of the SaNSR/nisin complex is generated, revealing that SaNSR recognizes the last C-terminally located lanthionine ring of nisin. This determines the substrate specificity of SaNSR and ensures the exact coordination of the nisin cleavage site at the TASSAEM region.


Asunto(s)
Proteínas Bacterianas/química , Bacteriocinas/química , Farmacorresistencia Bacteriana , Nisina/farmacología , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Dominio Catalítico , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
6.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1322-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457525

RESUMEN

A number of Gram-positive bacteria produce a class of bacteriocins called `lantibiotics'. These lantibiotics are ribosomally synthesized peptides that possess high antimicrobial activity against Gram-positive bacteria, including clinically challenging pathogens, and are therefore potential alternatives to antibiotics. All lantibiotic producer strains and some Gram-positive nonproducer strains express protein systems to circumvent a suicidal effect or to become resistant, respectively. Two-component systems consisting of a response regulator and a histidine kinase upregulate the expression of these proteins. One of the best-characterized lantibiotics is nisin, which is produced by Lactococcus lactis and possesses bactericidal activity against various Gram-positive bacteria, including some human pathogenic strains. Within many human pathogenic bacterial strains inherently resistant to nisin, a response regulator, NsrR, has been identified which regulates the expression of proteins involved in nisin resistance. In the present study, an expression and purification protocol was established for the NsrR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method, resulting in crystals that diffracted X-rays to 1.4 Šresolution.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Farmacorresistencia Bacteriana/efectos de los fármacos , Nisina/farmacología , Streptococcus agalactiae/metabolismo , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular
7.
Sci Rep ; 5: 12470, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26212107

RESUMEN

Type 1 secretion systems (T1SS) of Gram-negative bacteria are responsible for the secretion of various proteases, lipases, S-layer proteins or toxins into the extracellular space. The paradigm of these systems is the hemolysin A (HlyA) T1SS of Escherichia coli. This multiple membrane protein complex is able to secrete the toxin HlyA in one step across both E. coli membranes. Common to all secreted T1SS substrates is a C-terminal secretion sequence being necessary as well as sufficient for secretion. However, it is not known whether transport occurs directionally, i.e. the N- or the C-terminus of T1SS substrates is secreted first. We have addressed this question by constructing HlyA fusions with the rapidly folding eGFP resulting in a stalled T1SS. Differential labeling and subsequent fluorescence microscopic detection of C- and N-terminal parts of the fusions allowed us to demonstrate vectorial transport of HlyA through the T1SS with the C-terminus appearing first outside the bacterial cells.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas Hemolisinas/metabolismo , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas/fisiología
8.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 671-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057793

RESUMEN

Nisin is a 34-amino-acid antimicrobial peptide produced by Lactococcus lactis belonging to the class of lantibiotics. Nisin displays a high bactericidal activity against various Gram-positive bacteria, including some human-pathogenic strains. However, there are some nisin-non-producing strains that are naturally resistant owing to the presence of the nsr gene within their genome. The encoded protein, NSR, cleaves off the last six amino acids of nisin, thereby reducing its bactericidal efficacy. An expression and purification protocol has been established for the NSR protein from Streptococcus agalactiae COH1. The protein was successfully crystallized using the vapour-diffusion method in hanging and sitting drops, resulting in crystals that diffracted X-rays to 2.8 and 2.2 Å, respectively.


Asunto(s)
Proteínas Bacterianas/química , Hidrolasas/química , Streptococcus agalactiae/química , Secuencia de Aminoácidos , Antibacterianos/química , Proteínas Bacterianas/genética , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hidrolasas/genética , Datos de Secuencia Molecular , Nisina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Streptococcus agalactiae/enzimología , Difracción de Rayos X
9.
Microbiologyopen ; 3(5): 752-63, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25176038

RESUMEN

The lantibiotic nisin is a small 3.4 kDa antimicrobial peptide, which acts against Gram-positive bacteria in the nmol/L range. Nisin is produced and secreted by several Lactococcus lactis strains to ensure advantages against other bacteria in their habitat. Nisin contains five specific lanthionine rings of which the first two are important for Lipid II binding and the last two are crucial for the pore formation in the membrane. To gain immunity against nisin, the producing strain is expressing an ABC transporter called NisFEG, which expels nisin from the membrane. As a result six to eightfold more nisin is needed to affect the cells. The hydrolysis of ATP by NisFEG is required for this immunity as shown by a mutant, where the ATP hydrolysis is disrupted (NisFH181A EG). Furthermore, NisFEG recognizes the C-terminus of nisin, since deletion of the last six amino acids as well as of the last ring lowered the fold of immunity displayed by NisFEG.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Lactococcus lactis/metabolismo , Nisina/química , Nisina/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/genética , Operón
10.
PLoS One ; 9(7): e102246, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25014359

RESUMEN

Nisin, a 3.4 kDa antimicrobial peptide produced by some Lactococcus lactis strains is the most prominent member of the lantibiotic family. Nisin can inhibit cell growth and penetrates the target Gram-positive bacterial membrane by binding to Lipid II, an essential cell wall synthesis precursor. The assembled nisin-Lipid II complex forms pores in the target membrane. To gain immunity against its own-produced nisin, Lactococcus lactis is expressing two immunity protein systems, NisI and NisFEG. Here, we show that the NisI expressing strain displays an IC50 of 73 ± 10 nM, an 8-10-fold increase when compared to the non-expressing sensitive strain. When the nisin concentration is raised above 70 nM, the cells expressing full-length NisI stop growing rather than being killed. NisI is inhibiting nisin mediated pore formation, even at nisin concentrations up to 1 µM. This effect is induced by the C-terminus of NisI that protects Lipid II. Its deletion showed pore formation again. The expression of NisI in combination with externally added nisin mediates an elongation of the chain length of the Lactococcus lactis cocci. While the sensitive strain cell-chains consist mainly of two cells, the NisI expressing cells display a length of up to 20 cells. Both results shed light on the immunity of lantibiotic producer strains, and their survival in high levels of their own lantibiotic in the habitat.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Proteínas Bacterianas/inmunología , Regulación Bacteriana de la Expresión Génica/inmunología , Lactococcus lactis/inmunología , Lipoproteínas/inmunología , Proteínas de la Membrana/inmunología , Nisina/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Lactococcus lactis/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nisina/genética , Nisina/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...