Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Neuroinform ; 12: 74, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455638

RESUMEN

Neuroscientists are actively pursuing high-precision maps, or graphs consisting of networks of neurons and connecting synapses in mammalian and non-mammalian brains. Such graphs, when coupled with physiological and behavioral data, are likely to facilitate greater understanding of how circuits in these networks give rise to complex information processing capabilities. Given that the automated or semi-automated methods required to achieve the acquisition of these graphs are still evolving, we developed a metric for measuring the performance of such methods by comparing their output with those generated by human annotators ("ground truth" data). Whereas classic metrics for comparing annotated neural tissue reconstructions generally do so at the voxel level, the metric proposed here measures the "integrity" of neurons based on the degree to which a collection of synaptic terminals belonging to a single neuron of the reconstruction can be matched to those of a single neuron in the ground truth data. The metric is largely insensitive to small errors in segmentation and more directly measures accuracy of the generated brain graph. It is our hope that use of the metric will facilitate the broader community's efforts to improve upon existing methods for acquiring brain graphs. Herein we describe the metric in detail, provide demonstrative examples of the intuitive scores it generates, and apply it to a synthesized neural network with simulated reconstruction errors. Demonstration code is available.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 411-414, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268360

RESUMEN

Retinal prosthetic devices can significantly and positively impact the ability of visually challenged individuals to live a more independent life. We describe a visual processing system which leverages image analysis techniques to produce visual patterns and allows the user to more effectively perceive their environment. These patterns are used to stimulate a retinal prosthesis to allow self guidance and a higher degree of autonomy for the affected individual. Specifically, we describe an image processing pipeline that allows for object and face localization in cluttered environments as well as various contrast enhancement strategies in the "implanted image." Finally, we describe a real-time implementation and deployment of this system on the Argus II platform. We believe that these advances can significantly improve the effectiveness of the next generation of retinal prostheses.


Asunto(s)
Algoritmos , Cara , Prótesis Visuales , Humanos , Procesamiento de Imagen Asistido por Computador , Reconocimiento Visual de Modelos/fisiología , Personas con Daño Visual
4.
Front Neuroinform ; 9: 20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26321942

RESUMEN

Reconstructing a map of neuronal connectivity is a critical challenge in contemporary neuroscience. Recent advances in high-throughput serial section electron microscopy (EM) have produced massive 3D image volumes of nanoscale brain tissue for the first time. The resolution of EM allows for individual neurons and their synaptic connections to be directly observed. Recovering neuronal networks by manually tracing each neuronal process at this scale is unmanageable, and therefore researchers are developing automated image processing modules. Thus far, state-of-the-art algorithms focus only on the solution to a particular task (e.g., neuron segmentation or synapse identification). In this manuscript we present the first fully-automated images-to-graphs pipeline (i.e., a pipeline that begins with an imaged volume of neural tissue and produces a brain graph without any human interaction). To evaluate overall performance and select the best parameters and methods, we also develop a metric to assess the quality of the output graphs. We evaluate a set of algorithms and parameters, searching possible operating points to identify the best available brain graph for our assessment metric. Finally, we deploy a reference end-to-end version of the pipeline on a large, publicly available data set. This provides a baseline result and framework for community analysis and future algorithm development and testing. All code and data derivatives have been made publicly available in support of eventually unlocking new biofidelic computational primitives and understanding of neuropathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...